摘要
研究盲信号分离中信号源数目未知情况下信号源数目的估计问题。证明了无观测噪声时,利用观察信号数据矩阵的零空间估计法确定信号源数目的方法,等价于通过计算观察信号数据矩阵的秩来确定信号源数目;阐述了在信号源盲分离中有观测噪声时,国内外信号源数目估计的主要方法:特征值分解、Akaike信息准则(AIC)、最小描述长度(MDL)及Minka Bayesian准则,通过理论分析与实验结果对这些方法进行比较,得出各方法的适用范围以及影响估计的主要参数,为信号源数目的正确获取提供参考。
The number of sources in blind source separation is studied. In the noise-free blind source separation, the method of estimating the source number by null space of the observed data matrix is proved to be equivalent to the method of computing the rank of the observed data matrix. In the blind source separation when there is noise present in the data, the methods of estimating the number of sources are mainly as follows: eigenvalue decomposition, the Akaike information criterion(AIC), the minimum description length(MDL) principle and the Minka Bayesian criterion. The applicable scope of these estimation methods and main parameters affecting estimation are obtained by theoretic analysis and experiment, which provide a reference for obtaining the number of sources exactly.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第1期1-4,共4页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金资助项目(60575028)
国家自然科学基金资助项目(60375011)
安徽省优秀青年科技基金资助项目(04042044)
新世纪优秀人才支持计划资助
安徽省高等学校科技创新团队计划资助项目(2005TD04)
关键词
盲信号分离
信号源数目
特征值分解
AIC准则
MDL准则
Minka
Bayesian准则
blind source separation
number of sources
eigenvalue decomposition
Akaike information criterion(AIC)
minimum description length (MDL) principle
Minka Bayesian criterion