期刊文献+

盲信号分离中信号源数目估计方法研究 被引量:6

Methods for estimation of the number of sources in blind source separation
在线阅读 下载PDF
导出
摘要 研究盲信号分离中信号源数目未知情况下信号源数目的估计问题。证明了无观测噪声时,利用观察信号数据矩阵的零空间估计法确定信号源数目的方法,等价于通过计算观察信号数据矩阵的秩来确定信号源数目;阐述了在信号源盲分离中有观测噪声时,国内外信号源数目估计的主要方法:特征值分解、Akaike信息准则(AIC)、最小描述长度(MDL)及Minka Bayesian准则,通过理论分析与实验结果对这些方法进行比较,得出各方法的适用范围以及影响估计的主要参数,为信号源数目的正确获取提供参考。 The number of sources in blind source separation is studied. In the noise-free blind source separation, the method of estimating the source number by null space of the observed data matrix is proved to be equivalent to the method of computing the rank of the observed data matrix. In the blind source separation when there is noise present in the data, the methods of estimating the number of sources are mainly as follows: eigenvalue decomposition, the Akaike information criterion(AIC), the minimum description length(MDL) principle and the Minka Bayesian criterion. The applicable scope of these estimation methods and main parameters affecting estimation are obtained by theoretic analysis and experiment, which provide a reference for obtaining the number of sources exactly.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期1-4,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(60575028) 国家自然科学基金资助项目(60375011) 安徽省优秀青年科技基金资助项目(04042044) 新世纪优秀人才支持计划资助 安徽省高等学校科技创新团队计划资助项目(2005TD04)
关键词 盲信号分离 信号源数目 特征值分解 AIC准则 MDL准则 Minka Bayesian准则 blind source separation number of sources eigenvalue decomposition Akaike information criterion(AIC) minimum description length (MDL) principle Minka Bayesian criterion
  • 相关文献

参考文献7

  • 1冶继民,张贤达,朱孝龙.信源数目未知和动态变化时的盲信号分离[J].中国科学(E辑),2005,35(12):1277-1287. 被引量:20
  • 2Ye J M,Zhu X L,Zhang X D.Adaptive blind source separation with an unknown number of source signals[J].Neural Computation,2004,16(8):1642-1660.
  • 3张洪渊,贾鹏,史习智.确定盲分离中未知信号源个数的奇异值分解法[J].上海交通大学学报,2001,35(8):1155-1158. 被引量:33
  • 4Cichocki A,Amari S.Adaptive blind signal and image processing[M].吴正国,译.北京:电子工业出版社,2005:114-118.
  • 5Karhunen J,Cichocki A,Kasprzak W,et al.On neural blind separation with noise suppression and redundancy reduction[J].International Journal of Neural Systems,1997,8(2):219-237.
  • 6Wax M,Kailath T.Detection of signals by information theoretic criteria[J].IEEE Trans on Acoustics Speech and Signal Processing,1985,ASSP-33:387-392.
  • 7Minka T P.Automatic choice of dimensionality for PCA[J].Advances in Neural Information Processing Systems,2000,13:598-604.

二级参考文献30

  • 1[1]Jutten C, Herault J. Blind separation of sources. Part Ⅰ. An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing, 1991, 24:1~20.
  • 2[2]Amari S, Cichochi A. Adaptive blind signal processing: neural network approaches [J]. Proc IEEE, 1998, 86(10):2026~2048.
  • 3[3]Cardoso J F. Blind signal separation: statistical principles [J]. Proc IEEE, 1998, 86(10):2009~2025.
  • 4[4]Comon P. Independent component analysis, a new concept?[J]. Signal Processsing, 1992, 36(3):287~314.
  • 5[5]Cardoso J F, Laheld B. Equivariant adaptive source separation [J]. IEEE Trans Signal Processing, 1996, 44:3017~3030.
  • 6Hyvarinen A,Karhunen J,Oja E.Independent Component Analysis.New York:Wiley,2001.
  • 7Cardoso J F.Blind beamforming for non-Gaussian signals.IEE Proc -F,1993,140(6):362~370.
  • 8Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis.IEEE Trans Neural Networks,1999,10(3):626~634.
  • 9Feng D Z,Zhang X D,Bao Z.An efficient multistage decomposition approach for independent components.Signal Processing,2003,83(1):181~197.
  • 10Comon P.Independent component analysis:A new concept? Signal Processing,1994,36(3):287~314.

共引文献47

同被引文献60

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部