期刊文献+

基于SVM的多源遥感影像面向对象建筑物提取方法 被引量:15

OBJECT-ORIENTED BUILDING EXTRACTION OF MULTI-SOURCE REMOTE SENSING IMAGERY BASED ON SVM
在线阅读 下载PDF
导出
摘要 在分析支持向量机(Support Vector Machine,SVM)分类技术和机载激光雷达(LIDAR)数据、航空影像特征的基础上,提出了基于SVM的LIDAR数据和航空影像的面向对象建筑物提取方法。结果表明,该方法充分利用了多源影像的互补信息,能够得到更高的信息提取精度,准确而快速地更新地理空间数据库,是一种有效的面向对象建筑物提取方法。 On the basis of analyzing the Support Vector Machine (SVM) classification technique and the features of LIDAR data and aerial imagery, this paper has put forward a new building extraction method based on object -oriented SVM, which integrates multi - source information of aer/al imagery and Light Detection and Ranging ( LI- DAR) data. Tests show that the extraction accuracy is improved by using this method. Moreover, the proposed object -oriented building extraction method not only proves to be effective but also can update GIS database quickly and accurately.
出处 《国土资源遥感》 CSCD 2008年第2期27-29,47,共4页 Remote Sensing for Land & Resources
基金 地理空间信息工程国家测绘局重点实验室项目(200720) 广西自然科学基金项目(052204)共同资助
  • 相关文献

参考文献9

  • 1Rottensteiner F, Trinder J, Clode S, et al. Using the DempsterShafer Method for the Fusion of LIDAR Data and Multi - spectral Images for Building Detection [ J ]. Information Fusion, 2005, (6) : 283 -300.
  • 2Sohn G, Dowman I. Data Fusion of High - resolution Satellite Imagery and LIDAR Data for Automatic Building Extraction[ A]. ISPRS Journal of Photogrammetry & Remote Sensing [ C ]. 2007, 62 : 43 - 63.
  • 3Syed S, Dare P, Jones S. Semi - automatic 3D Building Model Generation from LIDAR and High Resolution Imagery[ A ]. Proceedings of SSC2005 Spatial Intelligence, Innovation and Praxis: The national biennial Conference of the Spatial Sciences Institute [ C]. Melbourne: Spatial Sciences Institute, 2005.
  • 4张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2288
  • 5Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[ J]. Knowledge Discovery and Data Mining, 1998, 2 (2) : 121 - 167.
  • 6邓非.IDAR数据与数字影像的配准和地物提取研究[D].武汉:武汉大学,2004.
  • 7Baatz M, et al. eCognition User Guide 4 [ Z ]. Copyright 2000 - 2004 Definiens Zmage. Made in Germany ,2004.
  • 8Chang C C, Lin C J. LIBSVM: A Library for Support Vector Machines [ EB/OL ]. http ://www. csie. ntu. edu. tw/- cjlin/libsvm, 2001.
  • 9傅文杰,洪金益,朱谷昌.基于SVM遥感矿化蚀变信息提取研究[J].国土资源遥感,2006,18(2):16-19. 被引量:9

二级参考文献13

  • 1VAPNIKVN 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 2Scholkopf B, Mika S, Burges C. Input space vs. feature space in kernel - based methods [J]. Transactions on Neural Networks,1999,10(5): 1000-1017.
  • 3Kruse F A, et al. The Spectral Image Processing System (SIPS) -Interactive Visualization and Analysis of Imaging Spectrometer Data[J]. Remote Sens. Environ,1993, 44:145-163.
  • 4Hixson M, Scholz D, Fuhs Net al. Evaluation of several schemes for classification of remotely sensed data[J]. Photogrammetric Engineering and Remote Sensing, 1980,46: 1547-1553.
  • 5Chih - Chung Chang, Chih - Jen Lin. LIBSVM: A library for support vector machines,2001, software available at[EB/OL]. http://www. csie. ntu. edu. tw/- cjlin/libsvm
  • 6Platt J. Fast training of support vector machines using sequential minimal optimization [M]. Advances in Kernel Metheds - support vector Learning. Cambridge. MA: MITpress, 1999.
  • 7Joachims T. Making Large -scale SVM Learning Practiceal[M]. In Advances in Kernel Methods - support Vector Learning, MIT Press,Cambridge, MA, 1998.
  • 8Yu X, Reed I S, Stocker A D. Comparative performance analysis of adaptive muhispectral detectors[J]. IEEE Transaction on Signal Processing, 1993, 41 (8):2639-2656.
  • 9Ruiz - armenia J R. Prol - ledesma. Techniques for enhancing the spectral response of hydro - thermal alteration minerals in Thematic Mapper images of Central Mexico [J]. Int. J. Remote Sensing,1998, 19 (10):1981-2000.
  • 10Vapnik V N. The Nature of Statistical Learning theory [M]. New York: Springer Verlag, 1995.

共引文献2295

同被引文献173

引证文献15

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部