期刊文献+

一种基于自我聚类的异常检测学习方法

Anomaly detection method by clustering normal data
在线阅读 下载PDF
导出
摘要 提出一种新的基于正选择的异常检测方法,该方法通过聚类学习正常空间特征,在每个类中选择有代表性的自我样本构造检测器集,之后利用正选择算法进行异常检测。这种方法既能适用于自我样本集较多的情形,克服了T.Stibor提出的正选择的局限,又具备了一定的学习能力。同时,该方法还避免了负选择中随机选择样本带来的弊端。通过实验分析,该方法比VDetector具备更好的检测性能,是一种有效的异常检测方法。 A new anomaly detection method was proposed based on positive selection. The method learned the characteristic of "self" space by clustering, and then selected typical samples from every cluster to construct detectors. And positive selection was used to detect anomalies. The new algorithm is not only effective in certain application with large number of "self" samples, but also avoids the shortcoming by randomly selecting sample in VDetector. Experimental results on Ring data and biomedical data show that the new method is more effective in anomaly detection.
出处 《计算机应用》 CSCD 北大核心 2008年第6期1438-1440,1474,共4页 journal of Computer Applications
基金 天津市自然科学基金资助项目(05YFJMJC05700) 河北省自然科学基金资助项目(F2006000109)
关键词 聚类 异常检测 负选择 正选择 cluster anomaly detection negative selection positive selection
  • 相关文献

参考文献13

  • 1肖辉,龚薇.基于可达邻域的异常检测算法[J].计算机工程,2007,33(17):74-76. 被引量:4
  • 2SHON T, MOON J. A hybrid machine learning approach to network anomaly detection [J]. Information Sciences, 2007, 177( 18): 3799 - 3821.
  • 3蒋盛益,姜灵敏.一种高效异常检测方法[J].计算机工程,2007,33(7):166-168. 被引量:7
  • 4PATCHA A, PARK J-M. An overview of anomaly detection techniques: Existing solutions and latest technological trends [ J]. Computer Networks, 2007, 51 (12) : 3448 - 3470.
  • 5GONZALEZ F, DASGUPTA D, KOZMA R. Combining negative selection and classification techniques for anomaly detection [ C]// Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002). Washington: IEEE Press, 2002, 1:705-710.
  • 6GONZALEZ F A, DASGUPTA D, NINO L F. A randomized realvalued negative selection algorithm [ C]//Proceedings of the 2nd International Conference on Artificial Immune Systems (ICARIS), LNCS2787. Berlin: Springer-Verlag, 2003:261-272.
  • 7ZHOU JI, DASGUPTA D. Real-valued negative selection algorithm with variable-sized detectors [ C]//Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2004), LNCS 3102. Berlin: Springer-Verlag, 2004:287-298.
  • 8ZHOU JI, DASGUPTA D. Augmented negative selection algorithm with variable-size detectors [ C]// IEEE Congress on Evolutionary Computation (CEC 2004). Washington: IEEE Press, 2004, 1: 1081 - 1088.
  • 9ZHOU JI. A boundary-aware negative selection algorithm [ C/OL]// Proceedings of lASTED International Conference on Artificial Intelligence and Soft Computing ( ASC 2005). Benidorm, Spain: ACTA Press, 2005 [ 2007 - 10 - 26 ]. http://www. zhouji. net/prof/asc2005, pdf.
  • 10ZHOU JI, DASGUPTA D. Estimating the detector coverage in a negative selection algorithm [C]//Proceedings of the 2005 Conference on Genetic and Evolutionary Computation Conference ( GECCO 2005). New York: ACM Press, 2005, 1:281 -288.

二级参考文献17

  • 1蒋盛益,李庆华.一种基于引力的聚类方法[J].计算机应用,2005,25(2):286-288. 被引量:9
  • 2蒋盛益,李庆华,王卉,孟中楼.一种增强的局部异常挖掘方法[J].计算机研究与发展,2005,42(2):210-216. 被引量:8
  • 3蒋盛益,李庆华,赵延喜.一种两阶段异常检测方法[J].小型微型计算机系统,2005,26(7):1237-1240. 被引量:7
  • 4He Zengyou,Xu Xiaofei,Deng Shengchun.Discovering Clusterbased Local Outliers[J].Pattern Recognition Letters,2003,24(9/10):1651-1660.
  • 5Harkins S,He H,Willams G J,et al.Outlier Detection Using Replicator Neural Networks[C]//Proceedings of the 4th International Conference on Data Warehousing and Knowledge Discovery.2002:170-180.
  • 6Merz C J,Merphy P.UCI Repository of Machine Learning Databases[Z].1996.http://www.ics.uci.edu/ mlearn/ MLRRepository.html.
  • 7Yamanishi K,Takeuchi J.Discovering Outlier Filtering Rules from Unlabeled Data:Combining a Supervised Learner with an Unsupervised Learner[C]//Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2001-08.
  • 8Knorr E M.Outliers and Data Mining:Finding Exceptions in Data[D].Canada:Univesity of British Columbia,2002.
  • 9Breunig M M,Kriegel H P,Ng R T,et al.LOF:Identifying Densitybased Local Outliers[C]//Proceedings of SIGMOD'00,Dallas,Texas.2000:427-438.
  • 10Hawkins D.Identification of Outliers[M].London:Chapman and Hall,1980.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部