期刊文献+

基于Bézier曲线的DR图像平滑算法 被引量:2

A Smoothing Algorithm Based on Bézier Curve for DR Image
在线阅读 下载PDF
导出
摘要 分析了DR(Dead Reckoning)递推和平滑的原理及常用算法,提出了一个新的基于Bézier曲线的DR图象平滑算法,讨论了DR算法中阈值、步长和平滑时间三个重要参数的选择问题.将该算法应用于一个分布交互仿真系统-综合仿真系统(Synthetic Si mulation System,SSS)中,取得了良好的图象平滑效果. We analyzed the principles of the existent DR and smoothing algorithm, presented a new smoothing algorithm based on Bézier curve for DR Image, and discussed three parameters in the algorithm, including threshold, step and ,smoothing period. We applied this algorithm to a distributed interactive simulation system, Synthetic Simulation System (SSS). The results demonstrate that it can smooth DR image effectively.
出处 《微电子学与计算机》 CSCD 北大核心 2008年第5期14-18,23,共6页 Microelectronics & Computer
基金 国防科技预研基金项目(205502) 国家留学基金项目(2004811048)
关键词 BÉZIER曲线 DR图象平滑 DR 分布式交互仿真 Bézier curve smoothing of DR image dead reckoning distributed interactive simulation
  • 相关文献

参考文献6

  • 1陈谊.DVE关键技术及其在复杂系统仿真中的应用研究.通信学报,2004,25(4):124-131.
  • 2IEEE recommended practice for distributed interactive simulation-exercise management and feedback. IEEE Std 1278.3- 1995[S]. NY, USA:IEEE Inc. 1996.
  • 3Lin K C, Wang M, Wang J. The smoothing of dead reckoning image in distributed interactive simulation[C]//Proc of the 1995 AIAA Flight Simulation Technology Conf. Baltimore, MD, 1995.
  • 4Donald Heam, Pauline Baker M. Computer graphics[ M]. UK:Prentice Hall, 1997.
  • 5Lin K C, Schab D. The performance assessment of the dead reckoning algorithms in DIS[J]. Simulation, 1994, 63(5) :318 - 325.
  • 6陶化成.DR算法门限值的确定[J].系统仿真学报,2002,14(3):288-289. 被引量:9

二级参考文献3

共引文献9

同被引文献31

  • 1Sarfraz M, Khan M A. Automatic outline capture of arabicfonts[J]. Inf. Sci., 2002(140) :269- 281.
  • 2Soares L D, Pereira F. Spatial shape error concealment for object- basedimage and video coding[J]. IEEE Trans. Image Processing, 2004,13(4) : 586 - 599.
  • 3Hill Jr F S. Computer graphics[ M]. Boston: Prentice- Hall, Englewood Cliffs, 1990.
  • 4Forrest A R. Interactive interpolation and approximation by bezier polynomials[J]. Comput. J. ,1972, 15(1):71- 79.
  • 5Bartels R H, Beatty J C, Barsky B A. An introduction to splines for use in computer graphics & geometric modeling [M]. San Fransisco: Morgan Kaufmann Publishers Inc., 1987.
  • 6Sohel F A, Arkinstall J. Dynamic bezier curves for variable rate - distortion[ J ]. Pattern Recognition, 2008,40(2) : 513 - 542.
  • 7Reingold E M, Tilford J S. Tidier drawings of trees [J]. Software Engineering (S0268-6961), 1981, 7(2): 223-228.
  • 8Lamping J, Rao R. The hyperbolic browser: A focus+ context technique for visualizing large hierarchies [J]. Journal of Visual Languages & Computing (S1095-8533), 1996, 7(1): 33-55.
  • 9Tollis I, Eades P, Di Battista G, et al. Graph drawing: algorithms for the visualization of graphs [M]. New York, USA: Prentice Hall, 1998.
  • 10Zhao S, McGuffm M J, Chignell M H. Elastic hierarchies: Combining treemaps and node-link diagrams [C]//John T Stasko. IEEE Symposium on Information Visualization, Minneapolis, USA. USA: IEEE, 2005: 57-64.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部