期刊文献+

先进控制技术在预焙铝电解过程控制中的应用 被引量:4

Application of APC in Pre-baked Aluminium Electrolysis Process Control
在线阅读 下载PDF
导出
摘要 设计了预焙铝电解生产过程先进控制系统的总体结构,建立了基于神经网络的电解槽参数及阳极效应预测模型,设计了基于支持向量机的槽况解析与槽况诊断专家系统,提出了极距NN—PID控制策略、电解质温度基于混沌优化的模糊控制策略及氧化铝浓度的模糊专家控制策略;同时,针对有关参数的优化控制和产量质量能耗优化控制问题,提出了基于模糊专家控制技术的智能协调策略,以满足全局优化的控制目标;实验结果表明,系统能有效地实现预焙铝电解槽的优化控制,实现槽状态在线解析,并能达到优良的生产控制指标,为企业带来了巨大的经济效益和社会效益。 The collectivity structure of pre--baked aluminium electrolysis process advanced control system is designed. Prediction model of cell parameters based on neural network is constituted; the neural network expert system of cell state diagnosis based on support vector machine (SVM) is designed. The NN--PID control strategy of anode distance, the fuzzy control strategy based on chaos optimal of electrolyte temperature and the fuzzy--expert control strategy of alumina concentration are proposed. At the same time, considering the optimal control of important parameters, output, quality and energy consumption, the intelligent coordination strategy based on fuzzy--expert control technology is proposed, which can satisfy global optimal control target. The experiment results showed that the system could realize optimal control of aluminium electrolysis effectively; realize the cell state diagnosis on--line, and gain good control effect. The proposed system can bring large economic and social profits for the corporations.
作者 袁艳 张泰山
出处 《计算机测量与控制》 CSCD 2008年第5期637-639,656,共4页 Computer Measurement &Control
关键词 先进控制 预焙铝电解槽 混沌神经网络 支持向量机 专家模糊控制 advanced process control (APC) pre--baked aluminium electrolysis cell chaos neural network support vector machine(SVM) expert fuzzy control
  • 相关文献

参考文献11

二级参考文献43

  • 1李劼,刘业翔,黄永忠,王化章.铝电解过程控制信号的滤波与噪声解析模型的研究[J].中南矿冶学院学报,1993,24(3):318-325. 被引量:4
  • 2田贵云,张凝.一种新型电涡流位移传感器的研制[J].传感技术学报,1996,9(2):33-35. 被引量:6
  • 3邱竹贤.铝电解原理及应用[M].中国矿业大学出版社,1998..
  • 4Barron A R. Approximation and estimation bounds for artificial neural networks [J]. Machine Learning, 1994,14:115-133.
  • 5Russell Reed. Pruning algorithms-A survey[l]. IEEE Trans on Neural Networks, 1993,4 (5) : 239-242.
  • 6Setiono R. A penalty function approach for pruning feed-forward neuralnetworks[J]. Neural Computation,1997,9 : 185-204.
  • 7Chung F L, Lee L. Network-growth approach to design of feed-forward neural networks [J]. IEE Proc Control Theory Appl, 1995,142 (5) : 486-492.
  • 8Doering Axel, Galicki Miroslaw, Witte H. Structure optimization of neural networks with a algorithm [J].IEEE Trans on Neural Networks, 1997, 8 (6): 1434-1445.
  • 9Kitano H. Designing neural network using genetic algorithm with generation system [J]. Complex Systems,1990,4(3) :461-476.
  • 10Maniezzov. Genetic evolution of the topology and weight distribution of neural networks [J]. IEEE Trans on Neural Networks,1994, 5(1) :39-53.

共引文献38

同被引文献26

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部