期刊文献+

视觉注意力模型的改进算法 被引量:7

Improved algorithm of visual attention model
在线阅读 下载PDF
导出
摘要 视觉注意力能够对有限的信息资源进行分配,使感知具备选择能力。引入到图像分析领域,其模型的研究对自动估计图像的感兴趣区具有重要的意义。本文根据人类视觉感知的相关理论,对Itti视觉注意力模型进行了改进。首先,采用局部显著性度量的方法计算显著点的位置,然后融合进化规划和图像采样确定显著区域的大小,并根据注意焦点的转移依次得到一系列的显著区域。实验结果表明,用改进的注意力模型处理自然图像,获得了较为满意的效果。 Visual attention can distribute information resources appropriately, which makes human visual perception selective. In the domain of image analysis, researching on the visual attention model is significant, especially to extract the regions of interest. An improved Itti's visual attention model, inspired by human visual perception, is proposed. The salient point is located according to the local saliency measurement. And the size of the salient region is computed by combining evolutionary programming with subsampling. In this way, a series of salient regions are detected by shifting the focus of attention. The experimental results show that the method of the improved visual attention model is effective to process natural images.
出处 《电子测量技术》 2008年第3期1-3,10,共4页 Electronic Measurement Technology
基金 国家自然科学基金(60472036 60431020 60402036) 北京市自然科学基金(3052005) 教育部博士点基金(20040005015)
关键词 注意力模型 显著区域 注意焦点 visual attention model salient region focus of attention (FOA)
  • 相关文献

参考文献8

  • 1CHEN L, FAN X, XIE X, et al. A visual attention model for adapting images on small displays [J]. ACM Multimedia Systems Journal, 2003, 9(4):353-364.
  • 2BONAIUTO J, ITTI L. Combining attention and recognition for rapid scene analysis Los Angeles[A]. In: Computer Vision and Pattern Recognition, 2005 IEEE Computer Society Conference[C]. University of Southern California, 2005.
  • 3MANCAS M, MANCAS C, GOSSELIN B, et al. A rarity-based visual attention map - application to texture description [ J ]. Proc. IEEE International Conference on Image Processing, Atlanta, GA USA, 2006.
  • 4JING S, JUN G, JING Y. Synergetic object recognition based on visual attention saliency map. In: Information Acquisition, 2006 IEEE International Conference[C]. Taiwan, 2006.
  • 5ZHIWEN Y, HAUSAN W. A rule based technique for extraction of visual attention regions based on real- time clustering [ J ]. IEEE Transactions on Multimedia, 2007, 9(4):766-784.
  • 6MICHALEWICZ Z, JING X, TROJANOWSKI K. Evolutionary computation., one project, many directions[J]. ISMIS 1996:189-201.
  • 7张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 8RUMELHART D, ZIPSER D. Feature discovery by competitive learning [M]. New York: MIT Press, 1985 : 151-193.

二级参考文献13

  • 1Bourque E, Dudek G, Ciaravola P. Robotic sightseeing: A method for automatically creating virtual environments. In: Giralt G, ed.Proc. of the IEEE Conf. on Robotics and Automation. Leuven: IEEE Press, 1998. 3186~3191.
  • 2Kadir T, Brady M. Saliency, scale and image description. International Journal of Computer Vision, 2001,45(2):83-105.
  • 3Gesu VD, Valenti C, Strinati L. Local operators to detect regions of interest. Pattern Recognition Letters, 1997,18(11-13):1077-1081.
  • 4Wai WYK, Tsotsos JK. Directing attention to onset and offset of image events for eye-head movement control. In: Huang T, ed.Proc. of the Int'l Association for Pattern Recognition Workshop on Visual Behaviors. Seattle: IEEE Press, 1994. 79~84.
  • 5Stentiford FWM. An evolutionary programming approach to the simulation of visual attention. In: Kim JH, ed. Proc. of the IEEE Congress on Evolutionary Computation. Seoul: IEEE Press, 2001. 851-858.
  • 6Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998,20(11):1254-1259.
  • 7Itti L, Koch C. Computational modeling of visual attention. Nature Reviews Neuroscience, 2001,2(3):194-230.
  • 8Itti L, Koch C. Feature combination strategies for saliency-based visual attention systems. Journal of Electronic Imaging,2001,10(1):161-169.
  • 9Yee H, Pattanaik SN, Greenberg DP. Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Trans. on Computer Graphics, 2001,20(1):39-65.
  • 10Boccignone G, Ferraro M, Caelli T. Generalized spatio-chromatic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(10): 1298-1309.

共引文献52

同被引文献42

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2叶聪颖,李翠华.基于HSI的视觉注意力模型及其在船只检测中的应用[J].厦门大学学报(自然科学版),2005,44(4):484-488. 被引量:24
  • 3张鹏,王润生.基于视觉注意的遥感图像分析方法[J].电子与信息学报,2005,27(12):1855-1860. 被引量:10
  • 4Dimitri A Chernyak, L Strark. Top-down guided eye movement [J]. IEEE Transaction on systems, Man and Cybernetics, 2001,31.
  • 5Sang-jae Park, Sang-Woo Ban, Jang-Kyoo Shin. Implementation of Visual Attention System Using Bottom-up Saliency map Model[J]. Lecture Notes in Computer Science, 2003,2714.
  • 6L Itti, C Koth, E Niebur. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1998,20(11): 1254 1259.
  • 7ITTI L.Models of bottom-up and up-bottom visual attention[D].Cali-fornia:California Institute of Technology,2000.
  • 8ITTI L.Automatic foveation for video compression using a neurobiological model of visual attention[J].IEEE Trans on Image Processing,2004,13(10):1304-1318.
  • 9VAISHAMPAYAN V.Design of multiple description scalar quantizers[J].IEEE Trans on Information Theory,1993,39(3):821-834.
  • 10ITTI L,KOCH C,NIEBUR E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部