期刊文献+

Precise Asymptotics in Chung's Law of the Iterated Logarithm 被引量:2

Precise Asymptotics in Chung's Law of the Iterated Logarithm
原文传递
导出
摘要 Let X, X1, X2,... be i.i.d, random variables with mean zero and positive, finite variance σ^2, and set Sn = X1 +... + Xn, n≥1. The author proves that, if EX^2I{|X|≥t} = 0((log log t)^-1) as t→∞, then for any a〉-1 and b〉 -1,lim ε↑1/√1+a(1/√1+a-ε)b+1 ∑n=1^∞(logn)^a(loglogn)^b/nP{max κ≤n|Sκ|≤√σ^2π^2n/8loglogn(ε+an)}=4/π(1/2(1+a)^3/2)^b+1 Г(b+1),whenever an = o(1/log log n). The author obtains the sufficient and necessary conditions for this kind of results to hold. Let X, X1, X2,... be i.i.d, random variables with mean zero and positive, finite variance σ^2, and set Sn = X1 +... + Xn, n≥1. The author proves that, if EX^2I{|X|≥t} = 0((log log t)^-1) as t→∞, then for any a〉-1 and b〉 -1,lim ε↑1/√1+a(1/√1+a-ε)b+1 ∑n=1^∞(logn)^a(loglogn)^b/nP{max κ≤n|Sκ|≤√σ^2π^2n/8loglogn(ε+an)}=4/π(1/2(1+a)^3/2)^b+1 Г(b+1),whenever an = o(1/log log n). The author obtains the sufficient and necessary conditions for this kind of results to hold.
作者 Li Xin ZHANG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第4期631-646,共16页 数学学报(英文版)
基金 National Natural Science Foundation of China (No.10471126)
关键词 the law of the iterated logarithm Chung's law of the iterated logarithm small deviation i.i.d random variables the law of the iterated logarithm, Chung's law of the iterated logarithm, small deviation,i.i.d, random variables
  • 相关文献

参考文献2

二级参考文献13

  • 1Wang, D. C., Su, chun.: Moment complete convergence for B valued I.I.D. random variables. Acta Mathematicae Applicatae Sinica (in Chinese), in press
  • 2Csorgo, M., Revesz, P.: Strong Approximations in Probability and Statistics, Academic Press, New York,1981
  • 3Sakhanenko, A. I.: On unimprovable estimates of the rate of convergence in the invariance principle. In Colloquia Math. Soci. Janos Bolyai, 32, 779-783 (1980), Nonparametric Statistical Inference, Budapest (Hungary)
  • 4Sakhanenko, A. I.: On estimates of the rate of convergence in the invariance principle. In Advances in Probab. Theory: Limit Theorems and Related Problems (A. A. Borovkov, Ed.), Springer, New York,124-135, 1984
  • 5Sakhanenko, A. I.: Convergence rate in the invariance principle for nonidentically distributed variables with exponential moments. In Advances in Probab. Theory: Limit Theorems for Sums of Random Variables (A.A. Borovkor, Ed.), Springer, New York, 2-73, 1985
  • 6Billingsley, P.: Convergence of Probability Measures, J. Wiley, New York, 1968
  • 7Einmahl, U.: The Darling-Erdo Theorem for sums of i.i.d, random variables. Probab. Theory Relat. Fields,82, 241-257 (1989)
  • 8Feller, W.: The law of the iterated logarithm for idnetically distributed random variables. Ann. Math., 47,631-638 (1945)
  • 9Petrov, V. V.: Limit Theorem of Probability Theory, Oxford Univ. Press, Oxford, 1995
  • 10Li, D., Wang, X. C., Rao, M. B.: Some results on convergence rates for probabilities of moderate deviations for sums of random variables. Internet. J. Math and Math. Sci., 15(3), 481-498 (1992)

共引文献23

同被引文献14

  • 1C. M. Newman.Normal fluctuations and the FKG inequalities[J]. Communications in Mathematical Physics . 1980 (2)
  • 2YU H.A strong invariance principle for associatedrandom variables. The Annals of Probability . 1996
  • 3Y. Jiang,L. X. Zhang,T. X. Pang.Precise rates in the law of the logarithm for the moment of i.i.d. random variables. Journal of Mathematical Analysis and Applications . 2007
  • 4Birkel T.Moment bounds for associated sequences. Annals of Applied Probability . 1988
  • 5Newman C M,Wright A L.An invariance principle for certain dependent sequences. Annals of Probability, The . 1981
  • 6Billingsley P.Convergence of Probability Measures. . 1968
  • 7Esary JD,Proschan F,Walkup DW.Association of random variables, with applications. Annals of Mathematics . 1967
  • 8GUT A,SP TARU A.Precise asymptotics in the law of the iterated logarithm. The Annals of Probability . 2000
  • 9Zhang X,Wu F Q,Zhang J F.New Generalized Chaplygin Gas as a Scheme for Unification of Dark Energy and Dark Matter. JCAP . 2006
  • 10FU K A,ZHANG L X.Precise rates in the law of the logarithm for negatively associatedrandom variables. Computers and Mathematics With Applications . 2007

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部