期刊文献+

On the Rotating Navier-Stokes Equations with Mixed Boundary Conditions 被引量:2

On the Rotating Navier-Stokes Equations with Mixed Boundary Conditions
原文传递
导出
摘要 The stationary and nonstationary rotating Navier-Stokes equations with mixed boundary conditions are investigated in this paper. The existence and uniqueness of the solutions are obtained by the Galerkin approximation method. Next, θ-scheme of operator splitting algorithm is applied to rotating Navier-Stokes equations and two subproblems are derived. Finally, the computational algorithms for these subproblems are provided. The stationary and nonstationary rotating Navier-Stokes equations with mixed boundary conditions are investigated in this paper. The existence and uniqueness of the solutions are obtained by the Galerkin approximation method. Next, θ-scheme of operator splitting algorithm is applied to rotating Navier-Stokes equations and two subproblems are derived. Finally, the computational algorithms for these subproblems are provided.
机构地区 College of Science
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第4期577-598,共22页 数学学报(英文版)
基金 the National Nature Science Foundation of China (Grants No.50306019,No.10571142,No.10471110 and No.10471109)
关键词 rotating Navier-Stokes equations mixed boundary conditions Uzawa Algorithm conju- gate gradient algorithm least-square method rotating Navier-Stokes equations, mixed boundary conditions, Uzawa Algorithm, conju- gate gradient algorithm, least-square method
  • 相关文献

参考文献2

二级参考文献28

  • 1苗长兴.非线性发展方程的自相似解[J].数学进展,2004,33(6):641-668. 被引量:2
  • 2Naumkin, P. I., Shishmarev, I. A.: Nonlinear Nonlocal Equations in the Theory of Waves, Translations of Math. Monographs, 133, A.M.S., Providence, R. I., 1994
  • 3Cardiel, R. E., Naumkin, P. I.: Asymptotics for nonlinear dissipative equations in the super critical case.Contemporary Mathematics, 307, 47-67 (2002)
  • 4Saut, J. C.: Sur quelques généralisations de l'équation de Korteweg-de Vries. J. Math. Pures Appl., 58(1),21-61 (1979)
  • 5Naumkin, P. I.: On the asymptotics as t→∞ of solutions to nonlinear equations for the case of maximal order. Diff. Equations, 29(6), 1071-1074 (1993)
  • 6Burgers, J. M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech., 1, 171-199(1948)
  • 7Karch, G.: Self-similar large time behavior of solutions to the Korteweg-de Vries-Burgers equation. Nonlinear Anal., T.M.A., 35A(2), 199-219 (1999)
  • 8Naumkin, P. I., Shishmarev, I. A.: Asymptotic relationship as t →∞ between solutions to some nonlinear equations I, II. Differential Equations, 30, 806-814; 1329-1340 (1994)
  • 9Amick, C. J., Bona, J. L., Schonbek, M. E.: Decay of solutions of some nonlinear wave equations. J. Diff.Eqs., 81, 1-49 (1989)
  • 10Biler, P.: Asymptotic behavior in time of solutions to some equations generalizing the Korteweg-de Vries-Burgers equation. Bull. Polish Acad. Sci., Mathematics, 32(5-6), 275-282 (1984)

同被引文献1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部