期刊文献+

一种改进的非负矩阵分解算法 被引量:3

An Improved Nonnegative Matrix Factorization Algorithm
在线阅读 下载PDF
导出
摘要 给出一种广义的Kullback-Leibler代价函数,基于调比梯度下降法得到新的非负矩阵分解算法。新算法的优点是能够对稀疏非负矩阵进行分解,但是新算法的收敛性没有得到改善。进一步对新算法进行改进,数值实验表明改进后算法的收敛性得到明显改善。 We presented a generalized KuUback- Leibler cost function, and derived a new nonnegative matrix factorization algorithm based on scaled gradient desent method. The merit of the new algorithm lies in that it could decompose sparse nonnegative matrix, and the defect is that the convergence has not been improved. We improved further the new algorithm, and the numercial experiment indicate the convergence of the improved algorithm has been improved well.
出处 《济南大学学报(自然科学版)》 CAS 2008年第2期193-196,共4页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金(60671063) 陕西省自然科学研究计划(2006A02)
关键词 非负矩阵分解 KL距离 辅助函数 调比梯度 nonnegative matrix factorization KL distence auxidium function scaling gradient
  • 相关文献

参考文献9

  • 1D D Lee, H S Seung. Learning the Parts of Objects by Non - negative Matrix Factorization[ J ]. Nature, 1999,401:788 - 791.
  • 2D D Lee, H S Seung. Algorithms for Non -negative Matrix Factorization [ J]. Advances in Neural Information Processing, MIT Press, 2001,13:556 - 562.
  • 3黄钢石,张亚非,陆建江,徐宝文.一种受限非负矩阵分解方法[J].东南大学学报(自然科学版),2004,34(2):189-193. 被引量:11
  • 4LlU Weixiang ZHENG Nanning YOU Qubo.Nonnegative matrix factorization and its applications in pattern recognition[J].Chinese Science Bulletin,2006,51(1):7-18. 被引量:23
  • 5O Okun, H Priisalu. Fast Nonnegative Matrix Factorization and Its Application for Protein Fold Recogation [ J ]. Applied Signal Processing,2006 ( 1 ) : 1 - 8.
  • 6A Cichocki, R Zdunek, S i Amari. New Algorithms for Non - negative Matrix Factorization in Applicationsto Blind Source Separation [ C ]. Acoustics, Speech and Signal Processing, ICASSP,2006.
  • 7魏乐.基于非负矩阵分解算法进行盲信号分离[J].电光与控制,2004,11(2):38-41. 被引量:7
  • 8Junying Zhang, Le Wei, Yue Wang. Computational decomposition of molecular signatures besed on blined source seperation of non - negative dependent sources with NMF [ J ]. Neutal Networks for Signal Processing,2003,13:409 - 418.
  • 9P O Hoyer. Non - Negative Sparse Coding [ J ]. Neural Networks for Signal Processing ,2002,12:557 - 565.

二级参考文献13

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:212
  • 2[2]Lee D D, Seung H S. Algorithms for non-negative matrix factorization [J]. Advances in Neural Information Processing Systems, 2001, 13: 556-562.
  • 3[3]Tsuge S, Shishibori M, Kuroiwa S. Dimensionality reduction using non-negative matrix factorization for information retrieval [A]. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetice[C]. Tucson, USA, 2001. 960-965.
  • 4[4]Li S Z, Hou X W, Zhang H J. Learning spatially localized parts-based representation [A]. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition [C]. Hawaii, USA, 2001.207-212.
  • 5[5]Lu Jianjiang, Xu Baowen, Yang Hongji. Mining typical user profiles using non-negative matrix factorizationg [A]. In:The Ninth International Conference on Distributed Multimedia Systems [C]. Florida, USA, 2003. 105-109.
  • 6[1]Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization [J]. Nature, 1999, 401: 788-791.
  • 7PLUMBLEY M. Conditions for non-negative independent component analysis [A]. IEEE Signal Processing Letters[C]. 2002.
  • 8PLUMBLEY M. Algorithms for Non-Negative Independent Component Anslysis[A]. IEEE Translations On Neural Network [C].
  • 9LEE D D, SEUNG H S. Learning the parts of objects by nonnegative matrix factorization[J]. Nature, 1999,401 (6775):788-791.
  • 10GUILLAMET D, VITRIA J. Non-negative matrix factorization for face recognition[A]. 5th Catalonian Conference on AI CCIA[C]. 2002, October 24-25.

共引文献37

同被引文献19

  • 1王延玉,张明强,王佐臣.基于DCT变换域的数字水印技术[J].福建电脑,2006,22(9):20-21. 被引量:2
  • 2温泉,孙锬锋,王树勋.基于零水印的数字水印技术研究[C].西安:西安电子科技大学出版社,2001.
  • 3D D Lee,H S Seung.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401(6755):788-791.
  • 4D J Field.What is the goal of sensory coding?[J.Neural Computation,1994,6(4):559-601.
  • 5M Heiler,C Schnorr.Learning sparse representations by non-negative matrix factorization and sequential cone programming[J].J of Mach.Learning Res,2006,7(7):1385-1407.
  • 6Lee D D, Seung H S. Algorithms for non-negative matrix factorization[J]. Advances in Neural Information Processing Systems, 2001,13:556 - 562.
  • 7Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401 (6755) :788 - 791.
  • 8胡广书.数字信号处理理论、算法与实现[M].2版.北京:清华大学出版社,2008:363-393.
  • 9Gonzalez R C.数字图像处理[M].阮秋琦,阮宇智,译.北京:电子工业出版社,2005.
  • 10冈萨雷斯.数字图像处理:MATLAB版[M].北京:电子工业出版社,2005.54-64.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部