期刊文献+

基于高密度电阻率成像法的轻非水相液体饱和度的确定 被引量:15

Determination of saturation distribution of light non-aqueous phase liquid based on electric resistivity tomography
在线阅读 下载PDF
导出
摘要 通过采用高密度电阻率成像法确定三维空间轻非水相液体的饱和度分布。首先,在三维砂槽上进行轻非水相液体的入渗试验,利用高密度电阻率成像法进行动态监测,在采集电压电流数据后,反演计算获取该三维空间电阻率的分布。然后利用Archie公式将三维空间的电阻率转换成轻非水相液体的饱和度。根据不同时间的饱和度的分布估算出不同时间轻非水相液体的入渗量,并与实测的入渗量进行了对比。结果表明,得到的轻非水相液体入渗量的估算值与实测值非常吻合,表明利用高密度电阻率成像法获取三维空间轻非水相液体饱和度的分布是可行的。 The electric resistivity tomography was applied to determine the 3-D saturation distribution of light non-aqueous phase liquid (LNAPL), The infiltration experiment was carried out in a flume with sand adopted as porous media and the dynamic process of infiltration was monitored using high density electric resistivity tomography, by which the 3-D distribution of electric resistivity was inversely calculated from the data of voltage and current distribution, On this basis, the distribution of LNAPL saturation can be calculated according to the Arehie formula for transforming the electric resistivity into saturation, The infiltration flow of LNAPL at different moments was estimated from the saturation distribution and was compared with the measured discharge, The result shows that the estimated infiltration flow is in good agreement with the measured discharge, It indicates that the electric resistivity tomography is a feasible method for determining the saturation distribution of LNAPL.
出处 《水利学报》 EI CSCD 北大核心 2008年第2期189-195,共7页 Journal of Hydraulic Engineering
基金 教育部博士点基金(20060284015) 国家自然科学基金(40371021)
关键词 Archie公式 多孔介质 轻非水相液体 饱和度 高密度电阻率成像法 Archie formula porous media LNAPL saturation distribution electric resistivitytomography
  • 相关文献

参考文献17

二级参考文献43

  • 1武晓峰,博士学位论文,1996年
  • 2Illangasekare T H,Ramsey J L,Karsten H J,Michael B B.ExperimentalStudy of Movement and Distribution of Dense Organic Contaminants in Heterogeneous Aaquifers[J].Journal of Contaminant Hydrology,1995,20:1-25.
  • 3Abriola L M,Pinder G F.A multiphase approach to the modeling of porous media contamination by organic compounds,1.Equation development[J].Water Resour.Res.,1985,21(1):11-18.
  • 4Faust C R,Guswa J H,Mercer J W.Simulation of three-dimensional flow of immiscible fluids within and below the unsaturated zone[J].Water Resour.Res.,1989,25(12):2449-2464.
  • 5Kaluarachi J J,Parker J C.An efficient finite element method for modelingof multiphase flow[J].Water Resour.Res.,1989,25(10):43-54.
  • 6Kueper B H,Frind E O.Two-phase flow in heterogeneous porous media.1.Model development[J].Water Resour.Res.,1991,27(6):1049-1057.
  • 7Adenekan A E,Patzek T W,Pruess K.Modeling of multiphase transport of multicomponent organic contaminants and heat in the subsurface:Numerical Model Formulation[J].Water Resour.Res.,1993,29(11):3727-3740.
  • 8Moridis G.,Pruess K.Flow and transport simulation using T2CG1,A package of conjugate gradient solvers for the TOUGH2 family of codes[R].Technaical Report,LBL-36235.
  • 9Schwille F.Dense chlorinated solvents in porous and fractured media[M].Lewis,Chelsea.MI.1988.
  • 10Compbell J H.Nonaqueous phase liquid flow through porous media:experimental study and conceptual sharp-front model development[J].M.S.Thesis,Department of Civil Environemntal and Architectural Eng.,University of Colorado,Boulder,CO,1992,179.

共引文献99

同被引文献227

引证文献15

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部