期刊文献+

网格中基于结构分类和位矩阵编码并行遗传算法的蛋白质二级结构预测 被引量:2

Protein Secondary Structure Prediction Based on the Structure Classification and the Bit Matrix Coding Parallel Genetic Algorithm in the Grid
在线阅读 下载PDF
导出
摘要 蛋白质二级结构预测是后基因组学的重要内容,是能准确预测蛋白质分子三维空间结构的关键步骤,它被证明是个NP难问题。同时,蛋白质数据库中的数据是巨量的,每天以指数形式在增长,而且不同的数据库位于不同的地域,受不同组织管理。提出一个网格中基于结构分类和位矩阵编码的并行遗传算法,有效地解决这个NP难问题,并且充分利用网格强大的并行计算能力,提高预测效率和准确率。 Protein secondary structure prediction is an important content of post genome project and it is the key step of protein 3D structure prediction, and it is proved to be a NP-hard problem. The data in protein databases is a large amount, and it is increasing intensely everyday. Different protein databases locate in different places, and they are managed by different organizations. A parallel genetic algorithm is proposed based on structure classification and bit matrix coding to do the prediction, which can solve this NP-hard problem effectively, and it can make good use of the powerful parallel ability of grid to improve the efficient and accuracy of the prediction.
作者 梁欢
出处 《科学技术与工程》 2008年第5期1141-1145,共5页 Science Technology and Engineering
关键词 网格 蛋白质二级结构预测 结构分类 位矩阵编码 并行遗传算法 gird protein secondary structure prediction parallel genetic algorithm structure classification bit matrix coding
  • 相关文献

参考文献11

  • 1[1]Frederic M R.The protein folding problem.Scientific American,1991:1:31-34
  • 2[2]Backofen R,Will S,Clote P.Algorithmic approach to quantifying the hydrophobin force contribution in protein folding.In:Klein R,Ahman B.Pacific Symposim on Biocomputing,2000.Singapo re:World Scientific publishing Co Pto Ltd.2000;95-106
  • 3[3]Baker D.A surprising simplicity to protein folding.Nature,2000;405:39-42
  • 4[4]Wu C H,Artificial neural networks for molecular sequence analysis.Comput Chem,2006;21(4):21-24
  • 5[5]Clumdonia J.The importance of larger data sets for protein secondary structure prediction with neural networks.Protein Sci,2006;5(4):12-16
  • 6[6]Pedersen JT,Moult J.Ab initio protein folding simulations with genefic algorithms:simulations on the complete seqllence of small protoius.Proteins,2005;(1):35-39
  • 7李菁,相秉仁.基于结构分类的BP神经网络预测蛋白质二级结构[J].药学进展,2003,27(2):110-113. 被引量:7
  • 8熊赟,陈越,朱扬勇.ProFaM:一个蛋白质序列家族挖掘算法[J].计算机研究与发展,2007,44(7):1160-1168. 被引量:2
  • 9何婷婷,戴文华,焦翠珍.基于混合并行遗传算法的文本聚类研究[J].中文信息学报,2007,21(4):55-60. 被引量:11
  • 10张海霞,唐焕文,张立震,靳利霞,唐一源.蛋白质二级结构预测方法的评价[J].计算机与应用化学,2003,20(6):735-740. 被引量:21

二级参考文献43

  • 1季星来,孙之荣.基于结构的丝氨酸蛋白酶超家族进化分析[J].电子学报,2001,29(z1):1756-1758. 被引量:16
  • 2陈浩,何婷婷,姬东鸿.基于k-means聚类的无导词义消歧[J].中文信息学报,2005,19(4):10-16. 被引量:16
  • 3符维娟,汪源源,卢大儒.无比对的生物分子序列比较方法[J].生物医学工程学杂志,2005,22(3):598-601. 被引量:3
  • 4孟海东,张玉英.基于密度和对象方向聚类算法的改进[J].计算机工程与应用,2006,42(20):154-156. 被引量:14
  • 5MacQueen J B.Some methods for classification and analysis of multivariate observations[A].In:Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability[C].Berkeley:University of California Press,1967,281-297.
  • 6Salton G,Wang A,Yang C S.A vector space model for automatic indexing[J].Communication of the ACM,1975,18(11):613-620.
  • 7Salton G,Buckley B.Term-Weighting approaches in automatic text retrieval[J].Information Processing and Management,1988,24(5):513-523.
  • 8刘建舟,何婷婷,姬东鸿.基于开放式语料的汉语术语的自动抽取[A].第二十届东方语言计算机处理国际学术会议论文集[C].北京:清华大学出版社,2003,43-49.
  • 9Liu Juan,Hitoshi Iba.Selecting informative genes with parallel GA in tissue classification[J].Genome Informatics,2001,3(12):14-23.
  • 10Pettey C B et al.A Parallel Genetic Algorithm[J].Proc of the Second ICGA,1987,155-161.

共引文献37

同被引文献44

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部