期刊文献+

一种基于SVMS的语义图像分类方法 被引量:3

Semantic-based image classification using SVMS
在线阅读 下载PDF
导出
摘要 如何跨越图像低层视觉特征到高层语义特征的"语义鸿沟"已成为语义图像检索问题的关键,首先将待分类图像分成五个区域;然后在提取图像底层特征的基础上,采用基于支持向量机组(SVMS)的方法建立图像低层视觉特征到高层语义特征之间的映射,将一幅图像同时归入一类或几类图像语义。实验结果表明,该方法具有较好的检索查全率和准确率。 The solution of "semantic gap" which existence between the low-features and the high-level semantic features had become the key in problems of the semantic image retrieval, First separated the image into five part, then extracted low-level features, used a new approach to establish a link from image low-level feature to high-level semantic based on support vector machines. Finally, the images were classified as one or several classes. The experiment proves that it has obtained the high accuracy.
出处 《计算机应用研究》 CSCD 北大核心 2008年第2期452-454,共3页 Application Research of Computers
基金 国家自然科学重点基金资助项目(60234030) 国防科工委资助项目
关键词 语义图像检索 底层特征 高层语义 支持向量机 semantic image retrieval low-level feature high-level semantic support vector machine (SVM)
  • 相关文献

参考文献15

  • 1COLOMBO C, DELBIMBO A, PALA P. Semantics in visual information retrieval[ J] . IEEE Multimedia , 1999, 6 ( 3 ) : 38- 53.
  • 2RABBITTI F, STANCHEV P. GRIM_DBMS: a graphical image database management system[ C] / /KUNII T. Visual Database Systems.Amsterdam: Elsevier, 1989: 415 - 430.
  • 3ZHANG Tong-zhen, FU Yong-gang. An image semantic retrieval system design and realization[ C] / /Proc of the 4th International Conference on Machine Learning and Cybernetics. 2005: 5284- 5289.
  • 4CAI Deng, HE Xiao-fei, MA Wei-ying, et al. Organizing WWW images based on the analysis of page layout and Web link structure[ C] / /IEEE International Conference on Multimedia and Expo. Taipei: [ s.n. ] , 2004: 113-116.
  • 5CHANG S, CHENW F, SUNDARAM H. Semantic visual templates:linking visual features to semantic [ C] / / Proc of International Conference on Image Processing( ICIP’98 ) . Chicago, Illinois: [ s. n. ] ,1998: 531 - 535.
  • 6ZHAO Rong, GROSKY W I. Narrowing the semantic gap improved text-based Web document retrieval using visual features [ J] . IEEE Trans on Multimedia , 2002, 4 ( 2 ) : 189 - 200.
  • 7鲍永生,任建峰,郭雷.支持语义的图像检索[J].南京航空航天大学学报,2005,37(1):75-78. 被引量:9
  • 8孙志杰,许宏丽.一种图像底层视觉特征到高层语义的映射方法[J].计算机应用,2004,24(12):22-24. 被引量:11
  • 9屠添翼,石跃祥,刘建军.基于小波域的加权分形图像编码[J].湘潭大学自然科学学报,2004,26(2):25-28. 被引量:5
  • 10KERMINEN P, GABBOUJ M. Image retrieval based on color matching[C] / /Proc of Finnish Signal Processing Symposium. Oulu,Finland: [ s. n. ] , 1999 : 89 -93.

二级参考文献25

  • 1Chang S F, Chen W, Sundaram H. Semantic visual templates: linking visual features to semantics[A].Proceedings of 1998 International Conference on Image Processing (ICIP'98)[C]. Chicago, Illinois.1998.4-7.
  • 2Zhao R, Grosky W I, Narrowing the semantic gapimproved text-based web document retrieval using visual features [J]. IEEE Transaction on Multimedia, 2002,4 ( 2 ) : 189- 200.
  • 3Stricker M, Dimai A. Color indexing with weak spatial constraints[A].Proc SPIE Storage and Retrieval for Image and Video Databases[C].1996.29-39.
  • 4Rui Y, Huang T S, Mehrotra S. Content-based image retrieval with relevance feedback in MARS[A].International Conference on Image Processing [C].1997,2:815-818.
  • 5Rui Y, Huang T S. A novel relevance feedback techniques in image retrieval [A]. Proceedings of the Seventh ACM International Conference on Multimedia[C]. United States, Orlando, Florida, 1999. 67-70.
  • 6Suykens J A K, Brabanter J D, Lukas L, et al. Weighted least squares support vector machines: Robustness and sparse approximation[ J], Neurocomputing, 2002, 48( 1 ): 85 ~ 105.
  • 7Keerthi S S, Shevade S K. SMO algorithm for least squares SVM [ A ]. In: Proceedings of the International Joint Conference on Neural [C], Portland, Oregon, USA. 2003, 3:2088~2093.
  • 8Vapnik V N. The nature of statistical learning theory [ M ]. New York: Springer Press, 1995.
  • 9Jacquin A E.Fractal image coding based on a theory of iterated contractive image transformations[J].SPIE: Visual Communications and Image Processing, 1990,1360:227-239.
  • 10Mallat S.A Theory for Multiresolution Signal Decom- position: The Wavelet Representation[J].IEEE Trans.PAMI,1989,11(7):674-693.

共引文献37

同被引文献29

  • 1李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280. 被引量:49
  • 2孟祥增,刘彤彦.一种基于内容的图像自动分类方法[J].情报杂志,2005,24(9):14-15. 被引量:4
  • 3成洁,石跃祥.基于SVM的图像低层特征与高层语义的关联[J].计算机应用研究,2006,23(9):250-252. 被引量:5
  • 4Zhang Tongzhen,Fu Yonggang. An image semantic retrieval system design and realization [ C ]//proc of the 5th International Conference on Machine Learning and Cybernetics. 2005:5284 -5289.
  • 5Szummer M, Picard R. Indoor-Outdoor Image Classification. Workshop in Content-based Access to image and video databases, 1998, Bombay, India.
  • 6Chapelle O, Haffner P, Vapnik V. SVMs for Histogram-based image classification. IEEE Trans on neural networks, 1999, 10 (5): 223 -232.
  • 7Vailaya A, Jain A. On Image Classification: City vs Landscape. work- shop in content- based access to image and video libraries, santa Bar- bara, California, 1998.
  • 8Collins T R, Liu Y. On-Line Selection of Discriminative Tracking Features. Proceedings of the International Conference on Computer Vision ( ICCV'03 ), France ,2003.
  • 9Maenpaa T,Pietikainen M. Texture analysis with local binary patterns. In:Chen CH & Wang PSP (eds) Handbook of Pattern Recognition and Computer Vision, 3 rd ed, World Scientific, 2005 : 197 - 216,.
  • 10CHAPELE O, HAFNER P, VAPNIK V. SVMs for histogram-based image classification[ J]. IEEE Transactions on Neural Networks, 1999, 10(5) : 1055 - 1065.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部