期刊文献+

一类带有阶段结构的传染病模型定性分析 被引量:3

Qualitative Analysis of an Epidemic Model with Stage Structure
在线阅读 下载PDF
导出
摘要 根据染病者在不同阶段具有不同的传染力以及不同阶段的染病者可以转化的特性,建立了一类带有阶段结构的传染病传播模型。借助再生矩阵求得了所建模型的基本再生数,并应用极限系统理论证得:当基本再生数不超过1时,模型仅存在全局稳定的无病平衡点;当基本再生数大于1时,无病平衡点不稳定,而且存在渐近稳定的地方病平衡点,当不考虑因病死亡率时,地方病平衡点是全局渐近稳定的。 According to the specialty of infection transmission that infected individuals have different infectivities in different stages and that infected individuals can move from a stage into the other stage with the development of infection, an epidemic model with stage is established. The basic reproduction number is found by means of the next generation matrix. By applying the theory of asymptotically autonomous systems, the following results are obtained : the disease- free equilibrium is globally asymptotically stable when the basic reproduction number is not greater than 1 ; the endemic equilibrium is locally asymptotically stable when the basic reprod.uction number is greater than 1. When the disease is not fatal, the endemic equilibrium is globally asymptotically stable if it exists.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2008年第1期86-88,共3页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家自然科学基金资助项目(10671209 30670486)
关键词 传染病模型 基本再生数 稳定性 阶段结构 epidemic model basic reproduction number stability stage structure
  • 相关文献

参考文献9

  • 1Li X, Gupur G, Zhu G. Mathematical Theory of Age - Structured Epidemic Dynamics [ M ]. Hertfordshire : Research Information Ltd,2002.
  • 2Wang Wendi, Ma Zhien. Global Dynamics of an Epidemic Model With Delay [ J ]. Nonlinear Analysis : Real world and Applications, 2002, 3 (4) : 809 - 834.
  • 3Zhang J, Ma Z. Global Dynamics of an SEIR Epidemic Model With Saturating Contact rate [ J ]. Math Bisci, 2003, 185 ( 1 ) : 15 - 32.
  • 4李建全,王拉娣,杨友社.两类含非线性传染率的传染病模型的定性分析[J].空军工程大学学报(自然科学版),2004,5(1):84-88. 被引量:16
  • 5Hyman J M, Li J, Stanley E A. The Differential Infectivity and Staged Progression Models for the Transmission of HIV [ J ]. Math Biosci, 1999, 155 ( 1 ) :77 - 109.
  • 6Ma Z, Liu J, Li J. Stability Analysis for Differential Infectivity Epidemic models [ J ]. Nonlinear Analysis: Real World Applications, 2003, 4 (4) :841 - 856.
  • 7Driessche P, Watmough J. Reproduction Numbers and Sub - Threshold Endemic Equilibria for Compartmental Models of Disease Transmission [J]. Math Biosci, 2002, 18( 1 ) : 29 -48.
  • 8LaSalle J P. The Stability of Dynamical Systems [ M]. Philadelphia: SIAM, 1976.
  • 9Thieme H R. Convergence Results and a Poincare - Bendixson Trichomy for Asymptotically autonomous Differential Equations [J]. J Math Biol, 1992, 30(3) :755 -763.

二级参考文献3

共引文献15

同被引文献27

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部