期刊文献+

基于概念格和关联规则Web个人化系统 被引量:4

A Web Personalization System Based on Concept Lattice and Association Rule
在线阅读 下载PDF
导出
摘要 最近的一些研究提出将Web使用日志的挖掘技术应用于Web个人化系统中,用于克服传统个人化技术(如CF技术、基于内容的过滤技术)中存在的问题,如处理大数据量的能力较差,依赖于用户主观的登记信息,产生的用户描述是静态的,不能获取对象之间丰富的语义联系等。但是基于Web使用日志挖掘的个人化技术不能适用于用户的使用信息获取困难或者站点内容经常变化的情况。更有效的办法是将站点的内容特征和使用特征结合到一个Web挖掘结构中去,以备推荐引擎统一使用。提出了一个基于关联规则挖掘的个人化系统,它使用概念格作为存储频繁页面集的数据结构,并介绍了如何利用概念格实时地为当前活动用户产生推荐集。 Recent proposals have suggested Web usage mining as an enabling mechanism to overcome the problem associated with more traditional Web personalization techniques such as collaborative or content - based filtering. These problems include lack of scalability , reliance on subjective user ratings or static profiles,and the inability to capture a richer set of semantic relation.ships among objects. Yet, usage- based personalization can be problematic when little usage data is available pertaining to some objects or when the site content changes regularly. For more effective persunalization, both usage and content attributes of a site must he integrated into a Web mining framework and used by the recommendation engine in a uniform manner. In this paper present an association - rule- based recommendation system,which extract usage patterns from Web log file and use the concept lattice as its data structure storing frequent itemsets. And show how to use concept lattice generated to compute a recommendation set for the active user on real time.
出处 《计算机技术与发展》 2008年第2期139-142,158,共5页 Computer Technology and Development
关键词 Web使用日志挖掘 推荐集 概念格 Web usage mining recommendation set concept lattice
  • 相关文献

参考文献4

二级参考文献19

  • 1[1]Cooley R, Mobasher B, Srivastava J. Data preparation for mining world wide web browsing patterns. Journal of Knowledge and Information Systems, 1999 (1): 230-241
  • 2[2]Agrawal, Srikant R. Fast algorithms for mining association rules.In proceedings of the 20th VLDB conference, 1994: 487-499
  • 3[3]Karypis H P. Clustering based on association rule hypergraphs.In Proccedings of SIGMOD'97 Workshop on Research Issues in DMKD'97, 1997: 331-352
  • 4[4]Karypis H P. Hypergraph based clustering in high-dimensional data sets:a summary of results. IEEE Bulletin of Technical Committee on Data Engineering, 1998, (21)1: 105-140
  • 5Liu B,Proceedings of the KDD-98,1998年,80页
  • 6Hu Keyun,Proceedings of the PAKDD- 99,1999年,109页
  • 7Zaki M J,Proceedings of the SIGMOD’98 Workshop on Research Issues in Data Mining and Kno,1998年,7卷,1页
  • 8Levy A.Efficient Query Processing for Information - Gathering Agents[A].Proceedings of the Workshop on Intelligent Information Agents.Gaithersburg: MD.National Institute of Standards and Technology[ C],1994.
  • 9Hu X.Knowledge Discovery in Database: An Attribute - oriented Rough Set Approach [ D].University of Regina,Canada,1995.
  • 10杨炳儒.知识工程与知识发现[M].北京:冶金工业出版社,2001..

共引文献109

同被引文献27

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部