期刊文献+

基于蚁群算法的AUV动目标避碰规划的方法研究 被引量:4

Research of a method for AUV to avoid collision with moving obstacles based on Ant Colony Algorithm
在线阅读 下载PDF
导出
摘要 提出了基于蚁群算法(ACA)实现AUV对运动目标避碰规划的方法。该方法把避碰、路径最短和航迹跟踪等约束条件映射为目标函数,使得路径搜索过程快速高效。计算机仿真表明:该方法使AUV能够较好地实现对运动目标的避碰;由此说明此项研究具有一定的可行性和有效性。 The paper proposes a method based on Ant Colony Algorithm(ACA)which can realize the collision avoidance for AUV with moving objects. The method maps the constraint conditions such as collision avoidance, shortest path and trace keeping into object function, which makes path search fast and efficient. Simulations display that the method can make AUV avoid collision with moving objects,thus the research has certain feasibility and validity.
作者 何祖军 齐亮
出处 《舰船科学技术》 北大核心 2007年第6期86-89,共4页 Ship Science and Technology
关键词 AUV 蚁群算法 避碰 动目标 AUV Ant Colony Algorithm collision avoidance moving object
  • 相关文献

参考文献3

二级参考文献10

  • 1Dorigo M,Gambardella L M,Middendorf M,et al. vip editorial: special section on ant colony optimization[A]. IEEE Transactions on Evolutionary Computation[C]. 2002,6(4): 317-319.
  • 2Dorigo M,Dicaro G. Ant colony optimization: a new meta-heuristic[A]. Proceedings of the 1999 Congress on Evolutionary Computation[C]. Washington,DC,USA: 1999,Vol.2. 1477. 474-477.
  • 3Wang C M,Soh Y C,Wang H,et al. A hierarchical genetic algorithm for path planning in a static environment with obstacles[A]. IEEE CCECE Canadian Conference on Electrical and Computer Engineering[C]. 2002,vol.3.1652-1657.
  • 4D'Amico A,Ippoliti G,Longhi S A. Radial basis function networks approach for the tracking problem of mobile robots[A]. Proceedings of the IEEE/ASME. International Conference on Advanced Intelligent Mechatronics[C]. 2001,vol.1. 498-503.
  • 5Weerayuth N,Chaiyaratana N.Closed-loop time-optimal path planning using a multi-objective diversity control oriented genetic algorithm[A]. Systems,Man and Cybernetics[C]. IEEE International Conference on,Vol.6:7.
  • 6Bruce J,Veloso M. Real-time randomized path planning for robot navigation[A]. Intelligent Robots and Systems 2002. IEEE/RSJ International Conference on,2002,Vol.3. 2383- 2388.
  • 7Dorigo M,Maniezzo V,Colorni A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems ,Man and Cybernetics,Part B: Cybernetics,1996,26(1): 29-41.
  • 8YVAN P. Underwater vehicle obstacle avoidance and path planning using a Multi-beam forward looking sonar[J]. IEEE Jqurnal of Oceanic,2001,26(2):127-129.
  • 9NOBORU N, HIDEO T. Path planning of agricultural mobile robot by neural network and genetic algorithm[J]. Computers and Electronics in Agriculture, 1997, 18(2):187-204.
  • 10李庆中,顾伟康,叶秀清.基于遗传算法的移动机器人动态避障路径规划方法[J].模式识别与人工智能,2002,15(2):161-166. 被引量:37

共引文献124

同被引文献18

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部