期刊文献+

基于AdaBoost的文本隐写分析 被引量:4

Text steganalysis using AdaBoost
在线阅读 下载PDF
导出
摘要 通过对自然文本统计模型和特性的分析,指出隐藏消息后可能对文本统计特性带来的变化,并提出了基于AdaBoost的通用检测算法。抽取文本的5个基本统计特征量为分类特征,对自然文本和载密文本进行有效分类检测。实验证明该算法具有较好的适用性和可靠性。 The statistical models and features of natural texts was analyzed, and it was pointed out that embedding messages in texts will change the features of them. According to the changes, a blind detecting method was designed using AdaBoost. Five basic parameters of texts was extracted as distinguished feature vectors to discriminate natural texts and stego-texts effectively using AdaBoost. Experimental results show the high accuracy and reliability of the method.
出处 《通信学报》 EI CSCD 北大核心 2007年第12期136-140,146,共6页 Journal on Communications
关键词 隐写分析 文本 统计特征量 ADABOOST steganalysis text statistical features AdaBoost
  • 相关文献

参考文献15

  • 1SUI X G, LUO H, ZHU Z L. A steganalysis method based on the distribution of first letters of words[A]. Proc of 2006 International Conference on Intelligent Information Hiding and Multimedia Signal Processing[C]. Pasadena, California, USA, 2006.369-372.
  • 2SUI X G, LUO H, ZHU Z L. A steganalysis method based on the distribution of characters[A]. Proc of 2006 International Conference on Signal Processing[C]. Guilin, China, 2006.2599-2602.
  • 3SUI X G, LUO H. A steganalysis method based on the distribution of space characters[A]. Proc of 2006 International Conference on Communications, Circuits and Systems[C]. Guilin, China, 2006.54-56.
  • 4FRIDRICH J. Feature-based steganalysis for JPEG images and its implications for future design of steganographic schemes[A]. International Workshop on Information Hiding (IH2004)[C]. Toronto, Canada, 2004.67-81.
  • 5XUAN G R, SHI Y Q, GAO J J. Steganalysis based on multiple features formed by statistical moments of wavelet characteristic functions[A]. Preproc of 7^th Int Workshop on Information Hiding[C]. Barcelona, Spain, 2005. 262-277.
  • 6FARID H, LYU S. Detecting hidden messages using higher-order statistics and support vector machines[A]. The 5^th Information Hiding Workshop[C]. Noordwijkerhout, Netherlands, 2002.340-354.
  • 7LYU S, FARID H. Steganalysis using higher- order image statistics[J]. Information Forensics and Security, IEEE Transactions, 2006,(3): 111- 119.
  • 8KEARNS M, VALIANT L G. Learning Boolean Formulae or Factoring[R]. Tech Rep TR 14-88 Aiken Computation Laboratory, Harvard University, 1988.
  • 9RICARDO BY,BERTHIER RN著,王知津等译.现代信息检索[M].北京:机械工业出版社,2005.102-104.
  • 10盛骤 谢式干 潘承毅.概率论与数理统计[M].北京:高等教育出版社,2002.60-152.

二级参考文献9

  • 11.Valiant L G.A Theory of Learnable.Communication of ACM,1984; 27:1134-1142
  • 22.Kearns M,Valiant L G.Learning Boolean Formulae or Factoring.Te- chnical Report TR-1488,Cambridge,MA:Havard University Aiken Computation Laboratory,1988
  • 33.Kearns M,Valiant L G.Crytographic Limitation on Learning Boolean Formulae and Finite Automata.In:Proceedings of the 21st Annual ACM Symposium on Theory of ComputingNew YorkNY:ACM press, 1989:433-444
  • 44.Schapire R E.The Strength of Weak Learnability.Machine Learning, 1990;5:197-227
  • 55.Freund Y.Boosting a Weak Algorithm by Majority.Information and Computation,1995;121(2):256-285
  • 66.Freund Y,Schapire R E.A Decision-Theoretic Generalization of On- Line Learning and an Application to Boosting.Journal of Computer and System Sciences,1997;55(1):119-139
  • 78.Schapire R EFreund YBartlett Y,et al.Boosting the Margin:A New Explanation for the Effectiveness of Voting Methods.The Annals of Statistics,1998;26(5):1651-1686
  • 89.Schapire R E.A Brief Introduction of Boosting.InProceedings of the 16th International Joint Conference on Artificial Intelligence,1999
  • 910.Schapire R E.A Brief Introduction of Boosting. In: Proceedings of the 16th International joint Conference on Artificial Intelligence1999

共引文献125

同被引文献32

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部