摘要
通过对自然文本统计模型和特性的分析,指出隐藏消息后可能对文本统计特性带来的变化,并提出了基于AdaBoost的通用检测算法。抽取文本的5个基本统计特征量为分类特征,对自然文本和载密文本进行有效分类检测。实验证明该算法具有较好的适用性和可靠性。
The statistical models and features of natural texts was analyzed, and it was pointed out that embedding messages in texts will change the features of them. According to the changes, a blind detecting method was designed using AdaBoost. Five basic parameters of texts was extracted as distinguished feature vectors to discriminate natural texts and stego-texts effectively using AdaBoost. Experimental results show the high accuracy and reliability of the method.
出处
《通信学报》
EI
CSCD
北大核心
2007年第12期136-140,146,共6页
Journal on Communications