期刊文献+

等离子体处理胶原锚定PLGA/脱细胞骨基质骨软骨双层支架材料的制备和评估 被引量:6

Preparation and assessment of plasma-treated collagen-anchored poly(lactic-co-glycolic acid)/acellular bone matrix bilayered scaffold
在线阅读 下载PDF
导出
摘要 目的:分别以胶原锚定方法修饰的聚乳酸-聚羟基乙酸共聚物(PLGA)为组织工程软骨支架材料,以脱细胞骨基质为组织工程骨支架材料,将二者结合制备出结合良好的组织工程骨软骨双层支架,并观察结构特征,以评估其作为组织工程化骨软骨复合体支架材料的可行性。方法:实验于2006-02/2007-02在解放军总医院骨科研究所完成。①支架的制备:以犬新鲜松质骨为原料,制备脱细胞骨基质作为骨支架材料;将脱细胞骨基质浸于盛有PLGA溶液的模具中,采用固-液相分离法结合致孔剂溶出法制备出多孔的PLGA/脱细胞骨基质双层支架,然后对PLGA支架部分进行等离子体处理和Ⅰ型胶原锚定修饰。得到的新型组织工程骨软骨双层支架的上层为多孔PLGA,下层为脱细胞骨基质。②支架的特征观察:对支架行扫描电镜检测,并采用乙醇置换法测定PLGA层孔隙率,采用北京亚林公司提供的扫描电镜图像分析系统测定PLGA层支架的平均孔径。结果:扫描电镜显示双层支架的PLGA部分具有良好的孔隙贯通结构,孔径为(211±33)μm,孔隙率为(95.0±1.5)%;脱细胞骨基质骨支架部分具有天然骨的孔径和空隙率;PLGA材料渗入骨支架部分,双层支架结合良好。结论:等离子体处理后胶原锚定修饰的PLGA/脱细胞骨基质双层支架具有良好的结构和孔隙率,结合良好,可作为支架载体应用于组织工程骨软骨复合体的构建。 AIM: Taking collagen anchorage-modified poly(lactic-co-glycolic acid) (PLGA) as tissue engineered cartilage scaffold and acellular bone matrix (ACBM) as tissue engineered bone scaffold, this study was aimed to develop a bilayered scaffold using PLGA/ACBM, investigate its performance and assess its feasibility for tissue engineering osteochondral scaffold materials. METHODS: The experiment was carried out in the Orthopedics Institute of Chinese PLA at General Hospital of Chinese PLA between February 2006 and February 2007. (1)ACBM was prepared for tissue engineering bone scaffolds material using canine cancellous bone. After the ACBM scaffolds were placed into cylindrical moulds containing PLGA solution, a bilayered porous PLGA/ACBM scaffold was fabricated using the porogen leaching method combined with solid-liquid phase separation, then PLGA was modified by combining plasma pre-treatment and collagen anchorage. The upper layer of the novel bilayered scaffold was porous PLGA, and the lower layer was ACBM. (2)The scaffold was investigated by scanning electron microscope (SEM). PLGA porosity was detected by using ethanol displacement method, and average pore diameter was determined by using SEM image analysis system, which was offered by Beijing Yalin Company. RESUTS: SEM results revealed that, PLGA scaffold had good pore interconnectivity with (211±33) μm pore diameter and (95.0±1.5)% porosity, and the ACBM scaffold had the natural pore and porosity. The two layers integrated very well. CONCLUSION: The porous PLGA/ACBM bilayered scaffold modified by plasma pre-treatment and collagen anchorage has good pore diameter and porosity, with the two layers integrate well, so it is potential for constructing tissue engineering osteochondral scaffold.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2007年第48期9646-9649,共4页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 国家自然科学基金重点课题资助项目(30330570) 军队十一五课题资助项目(06Z057)~~
  • 相关文献

参考文献24

  • 1Martin I, Miot S, Barbero A, et al. Osteochondral tissue engineering. J Biomech 2007;40(4):750-765.
  • 2Kantlehner M, Schaffner P, Finsinger D, et al. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. Chembiochem 2000;1(2):107-114.
  • 3Shi G, Cai Q, Wang CY, et al. Fabdcation and biocompatibility of cell scaffold of poly (L-latic acid-co-glycolic). Polym Adv Technol 2002,13: 227-232.
  • 4Yang J, Wan Y, Yang J, et al. Plasma-treated, collagen-anchored polylactone: Its cell affinity evaluation under shear or shear-free conditions. J Biomed Mater Res A 2003;67(4):1139-1147.
  • 5崔文瑾,涂赤枫,贝建中,王身国.PLLA细胞支架的制备方法及形态结构的研究[J].组织工程与重建外科杂志,2005,1(6):319-322. 被引量:2
  • 6Kang SW, Jeon O, Kim BS. Poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering. Tissue Eng 2005; 11 (3-4):438-447.
  • 7Kang SW, Yoon JR, Lee JS, et al. The use of poly(lactic-co-glycolic acid) microspheres as injectable cell carriers for cartilage regeneration in rabbit knees. J Biomater Sci Polym Ed 2006;17(8):925-939.
  • 8Yang J, Bei J, Wang S. Enhanced cell affinity of poly (D,L-lactide) by combining plasma treatment with collagen anchorage. B Biomaterials 2002;23(12):2607-2614.
  • 9Ma PX, Zhang R. Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res. 2001;56(4):469-477.
  • 10Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006;27(19):3675-3683.

二级参考文献34

  • 1王双运,宾丽华,胡安元,赵海兴,罗积芳,孟宪朝,聂解初.部分脱蛋白猪骨移植术后光镜电镜观察[J].临床口腔医学杂志,1994,10(3):145-146. 被引量:3
  • 2Buekwaher JA, Mankin HJ. Articular cartilage. PartⅡ : Degeneration and osteoarthrosis, repair, regeneration, and transplantation. J Bone Joint Surg(Am), 1997, 79: 612-632.
  • 3Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg(Am), 1993, 75: 532-553.
  • 4Kim HK, Moran ME, Salter RB. The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion: an experimental investigation in rabbits. J Bone Joint Surg(Am), 1991, 73: 1301-1315.
  • 5Vacanti CA, Upton J. Tissue-engineered morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradble polymer matrices. Clin Plast Surg, 1994, 21: 445-462.
  • 6Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg(Am), 1994, 76: 579-592.
  • 7Peterson L, Minas T, Brittberg M, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res, 2000, (374): 212-234.
  • 8Hangody L, Feczko P, Bartha L, et al. Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin Orthop Relat Res,2001, (391 Suppl): 328-336.
  • 9Adachi N, Sato K, Usas A, et al. Musc:le derived, cell based ex vivogene therapy for treatment of full thickness artecular cartilage detects. J Rheumatol, 2002, 29: 1920-1930.
  • 10Huang Jl, Beanes SR, Zhu M, et al. Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells. Plast Reconstr Surg, 2002, 109: 1033-1041.

共引文献34

同被引文献94

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部