期刊文献+

仅有两个数字恰好各出现两次的图序列 被引量:2

On the graphic sequences which contain only two numbers appearing exactly twice respectively
在线阅读 下载PDF
导出
摘要 如果非负整数不增序列d=(d1,d2,…,dn)中仅有k个数字恰好各出现t次,其它数字彼此不等,且d为图序列,则称d为G(k,t)图序列.本文讨论了G(2,2)图序列,得到非负整数不增序列d=(d1,d2,…,dn)为G(2,2)图序列的充要条件. Let d=(d1,d2,…,dn) be a non-increasing sequence of non-negative integers, in which only number k appear t times respectively, and all other numbers of the sequence are different, and d is a graphic sequence, then d is said a graphic sequence of G(k, t). In the paper, we discuss the graphic sequence of G(2, 2) and obtain a sufficient and necessary condition.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 2007年第4期501-504,共4页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金资助项目(10671089)
关键词 图序列 G(2 2)图序列 graphs graphic sequence graphic sequence of G(2, 2)
  • 相关文献

参考文献5

  • 1Bollobas B. Extremal Graph Theory[M]. London: The Ac ademic Press Inc, 1978.
  • 2Bondy J A, Murty U S R. Graph Theory with Applications [M]. London: The Macmillan Press Inc, 1976.
  • 3Behead M, chartarand G. No graph is perfect Amer[J]. Math Monthly, 1967 ,74:962-963.
  • 4Hutchinson J P. When three people shake the same numbers of hands an exercise of degree sequences[J]. Congressus Numerantium, 1993,95 : 31-35.
  • 5Chen G, Piotrowski W, Shreve W. Degree sequences with single repetitions[J]. Congressus Numer-antium, 1995,106.. 27-32.

同被引文献6

  • 1gondy J A, Murty U S R. Graph Theory with applications [M]. London:The Macmillan Press Inc, 1976.
  • 2Bollobas B. Extremal Graph Theory[M]. London: The Academic Press Inc, 1978.
  • 3Chartrand Gary, Zhang Ping. Introduction to Graph Theory [M].Beijing: Posts and Telecom Press, 2006.
  • 4Bondy J A, Murty U S R. Graph Theory with Applications [M].England: Macmillan Press Ltd, 1976.
  • 5Chen G,Piotrowski W, Shreve W. Degree sequences with singlerepetitions [J], Congressus Numer-antium, 1995.106; 27-32.
  • 6Behead M,Chartarand G. No graph is perfect Amer [J]. MathMonthly, 1967, 74: 962-963.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部