期刊文献+

热力耦合数值模拟往复挤压AZ31成形过程 被引量:6

Numerical simulation on reciprocating extrusion of AZ31 alloy by thermal-mechanical coupling method
在线阅读 下载PDF
导出
摘要 采用刚-粘塑性有限元法对AZ31镁合金往复挤压变形过程进行热力耦合(温度与位移相互作用)数值模拟,分析2道次往复挤压过程中等效应变速率场、等效应变场、等效应力场以及温度场的分布及变化情况。模拟结果表明:凹模细颈区与紧缩区的交接区域应变速率最大,呈弧线状分布;等体积往复挤压过程中,大变形区主要集中在细颈区靠近凹模内壁处以及镦粗一侧紧缩区靠近凹模内壁区域;挤压一侧紧缩区与细颈区的交接处应力较大,随变形的增加,应力最大值有所上升;温度场分布以细颈区中心为圆心,由高到低向外分布,在工件内形成温度梯度,高温区主要分布在细颈区中心区域。 The rigid visco-plastic finite element method was used for the coupled thermal-mechanical numerical simulation of reciprocating extrusion process of AZ31 Mg alloy. The distribution and variety of equivalent plastic strain rate field, equivalent plastic strain field, equivalent stress field and temperature field were simulated in two-pass reciprocating extrusion. The following conclusions indicated that the peak value of strain rate focuses on the conjoint area of narrow-neck area and shrinking area of the die, which presents a cambered distribution; during the equivalent volume reciprocating extrusion processes, the strong deformation area mainly focuses on the narrow-neck area which closes to the die wall and the shrinking area which closes to the conic shrinking wall of shrinking area that belongs to the stocky side ; the larger stress focuses on the conjoint area of shrinking area and narrow-neck area, and the more deformation causes the larger peak value of stress; the temperature field distributes around the center of narrow-neck area, diffuses from low to high in form of roundness and forms temperature gradient in the workpiece. The high temperature mainly distributes in the center of narrow-neck area.
出处 《兵器材料科学与工程》 CAS CSCD 北大核心 2007年第6期10-13,共4页 Ordnance Material Science and Engineering
基金 陕西省自然科学研究计划项目(2002E110 2003E111) 西安市科技攻关计划-工业攻关项目(GG06062) 西安理工大学科学研究计划项目(101-210602 101-210509)
关键词 往复挤压 有限元法 热力耦合 数值模拟 reciprocating extrusion finite element method thermal-mechanical coupling numerical simulation
  • 相关文献

参考文献8

二级参考文献56

  • 1陈勇军,王渠东,彭建国,翟春泉,丁文江.大塑性变形制备细晶材料的研究、开发与展望[J].材料导报,2005,19(4):77-80. 被引量:33
  • 2[1]Akhmadeev N A,Kobelev N P,Mulyukov R R,et al.The Effect of He at Treatment of Coper with the Submicrocrystalline Structure[J].Acta.Metall.Mater.,1993,41(4):1041-1046
  • 3[2]Segal V M.Materials Processing by Simple Shear[J].Mater.Sci.Eng.,1995,A197:157-164.
  • 4[3]Valiev R Z,Salimonenko D A,Tsenv N K,et al.Observations of Hig h Strain Rate Superplasticity in Commercial Aluminum Alloys with Ultrafine GrainSizes[J].Scripta.Mater.,1997,37(12):1945-1950.
  • 5[4]Komura S,Berbon P B,Furukawa M,et al.High Strain Rate Superpla sticity in An Al-Mg Alloy Containing Scandium [J].Scripta.Mater.,1998,38(12):1851-1856.
  • 6[5]Langdon T G,Furukawa M,Horita Z,et al.Using Intense Plastic St raining for High-Strain-RateSuperplasticity[J].JOM,1998,50(6):41-45.
  • 7[6]Berbon P B,Tsenev N K,Valiev R Z,et al.Fabrication of Bulk Ultra fine-Grained Materials through Intense Plastic Straining[J].Metall.Mater.Tran s.,1998,A29A:2237-2243.
  • 8M. Richert, J. Richert, J. Zasadzinski. Effect of Large Deformation on The Microstructrue of Aluminium Alloys [ J ]. Materials Chemistry and Physics,2003,81:528 - 530.
  • 9S.Y. Yuan, C.H. Peng,J. W. Yeh. Synthesis of Fine Pb-50vol.-% Sn Alloys by A New Process of Reciprocating Extrusion[ J ]. Material Science and Technology. 1999,15(6) :683 - 688.
  • 10Shiying Yuan, Jienwei Yeh, Chunhuei Tsau. Improved Microstructure and Mechanical Properties of 2024 Aluminum Alloy Produced by a Reciprocating Ectrusion Method [ J ]. Materials Transactions, JIM.1999,40:33 - 241.

共引文献98

同被引文献70

引证文献6

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部