期刊文献+

利用不同方法估测土壤有机质及其对采样数的敏感性分析 被引量:24

Estimation of Soil Organic Matter Based on Four Methods and Effect of Sampling Number on Estimation Accuracy
在线阅读 下载PDF
导出
摘要 用随机方法从262个采样点中抽取200个点作为已知有机质含量的数据集,将所有采样点的碱解氮作为辅助数据预测有机质的空间分布。利用有机质信息的普通克立格法的方差解释量和预测精度最低,而回归克立格法因在预测过程中加入了回归残差而使方差解释量最大、预测精度最高。为了分析采样数对不同方法预测精度的影响,从上述已知有机质含量的200个点中分别随机抽取40、80、120、160个点构成4个数据集,分别利用它们的有机质信息和不同方法预测了有机质的空间分布,结果表明:对于每个数据集,4种方法的预测精度顺序均为RGK>COK>RG>OK,线性回归法的预测精度随采样点的增加基本不变,而其它三种方法的预测精度却逐渐提高。 This paper presents four methods for estimating spatial distribution of soil organic matter and examines these methods' sensitivity to the sampling number. The four methods are ordinary kriging (OK), simple linear regression (RG), cokriging (COK), and regression-kriging (RGK). All sampling sites are randomly divided into two groups: interpolation dataset (200 points) and validation dataset (62 points). The organic matter of interpolation subset methods, ordinary and alkalizable nitrogen of all observations are used to mapping soil organic matter. kriging Among four , only using the information of organic matter, yields lowest accurate predictions and smallest proportion of the total variation, while regression-kriging using secondary data (alkalizable nitrogen) yields highest accuracy and largest variation explainable. To examine the effect of sampling number on the performance of four mapping methods, four subsets of 40,80,120,160 sampling sites are randomly selected from the interpolation dataset. For each subset, organic matter is estimated over the study area by four methods, respectively. The results show that the accuracy performances of four methods are RGK 〉 COK 〉 RG 〉 OK. Moreover, the results indicate that the performance of simple linear regression remain stable, and that others perform better when the sample size of organic matter increased.
出处 《地理科学》 CSCD 北大核心 2007年第5期689-694,共6页 Scientia Geographica Sinica
基金 北京市自然科学基金(4061002) 农业部948项目(2006-G63)资助
关键词 土壤有机质 线性回归 克立格 协克立格 回归克立格 采样数 organic matter linear regression ordinary kriging cokriging regression-kriging sample size
  • 相关文献

参考文献17

  • 1Lopez Granados F, Jurado Exposito M, Pena Barragan J M, et al. Using geostatistical and remote sensing approaches for mapping soil properties[ J]. European Journal of Agronomy, 2005, 23(3) :279-289.
  • 2Gregorio C, Dobermann S A, Goovaerts P, et al. Fine -resolution mapping of soil organic carbon based on multivariate secondary data[J]. Geoderma, 2006,132(3-4) :471-489.
  • 3Baxter S J, Oliver M A. The spatial prediction of soil mineral N and potentially available N using elevation [ J]. Geoderma, 2005,128:325 - 339.
  • 4Sullivan D G, Shaw J N, Rickman D. IKONOS imagery to estimate surface soil property variability in two Alabama Physiographies[J]. Soil Science Society of America Journal, 2005, 69: 1789-1798.
  • 5王红,刘高焕,宫鹏.利用Cokriging提高估算土壤盐离子浓度分布的精度——以黄河三角洲为例[J].地理学报,2005,60(3):511-518. 被引量:23
  • 6Knotters M, Brus D, Voshaar J. A comparison of kriging, cokfiging and kfiging combined with regression for spatial interpolation of horizon depth with censored observations[J]. Geoderma, 1995, 67:227-246.
  • 7Hengl T, Heuvelink G B M, Stein A. A generic framework for spatial prediction of soil variables based on regression - kriging [J]. Geoderma, 2004,120:75-93.
  • 8姜勇,李琪,张晓珂,梁文举.利用辅助变量对污染土壤锌分布的克里格估值[J].应用生态学报,2006,17(1):97-101. 被引量:28
  • 9姜勇,梁文举,李琪.利用与回归模型相结合的克里格方法对农田土壤有机碳的估值及制图[J].水土保持学报,2005,19(5):97-100. 被引量:16
  • 10中国土壤学会化学专业委员会(编).土壤农业化学常规分析方法[M].北京:科学出版社,1983.

二级参考文献240

共引文献702

同被引文献405

引证文献24

二级引证文献440

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部