期刊文献+

基于SVM的光伏最大功率跟踪的预测研究 被引量:5

Prediction of MPPT Using Support Vector Machine for PV Module
在线阅读 下载PDF
导出
摘要 针对光伏组件中常用的最大功率跟踪方法存在的不足,将支持向量机用于预测光伏组件的最大功率点工作电压.支持向量机是一种新型的机器学习方法,该方法以结构风险最小化原则取代传统机器学习方法中的经验风险最小化原则,在小样本的机器学习中有着优异的性能.根据光伏组件的特点和最大功率点工作电压的影响因素,建立了支持向量机的最大功率点工作电压预测模型.实际仿真分析表明,与BP神经网络的模型相比,支持向量机的模型具有更高的预测精度. As the traditional ways of Maximum Power Point Track(MPPT) suffers from some dissatisfaction,Support Vector Machines(SVM) is proposed to predict the output voltage of Maximum Power Point of PV module.SVM is a novel machine learning approach,which is based on the principle of structural risk minimization,unlike other traditional machine learning approach which is based on empirical risk minimization principle.SVM can perform well in Machine Learning with small sample.This paper presents a kind of SVM for the prediction and simulation of the voltage of the maximum power output in PV module.Compared with BP Neural Network,the simulation result of predict shows that the presented method based on SVM is more accurate.
出处 《西安工业大学学报》 CAS 2007年第4期371-375,共5页 Journal of Xi’an Technological University
关键词 支持向量机 光伏组件 最大功率点 最大功率跟踪 预测 support vector machine(SVM) photovolatic module maximum power point(MPP) maximum power point track(MPPT) predict
  • 相关文献

参考文献6

  • 1[1]Kim Y,Jo H,Kim D.A New Peak Power Tracker for Cost-effective Photovoltaic Power Systems[J].IEEE Proc Energy Convers Eng Conf IECEC,1996,3(1):1673.
  • 2[2]Sullivan C R,Powers M J.A High-efficiency Maximum Power Point Tracker for Photovolatic Array in a Solar-powered Race Vehicle[J].Proc IEEE PESC,1993:574.
  • 3[3]Bahgat A B G,Helwa N H,Ahmad G E,et al.Maximum Power Point Tracking Controller for PV Systems Using Neural Networks[J].Renew Energy,2005,30:1257.
  • 4[6]Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer Verlag,1995.
  • 5[7]Chang Chihchung,Lin Chihjen.LIBSVM:a library for SVMs(Version 2.3)[DB/ OL].(2001-06-08)[2007-04-15].http:www.csie.utu.edn.tw/~cjlin/libsvm.
  • 6[8]Hiyama T,kouzuma S.Identification of Optimal Operating Point of PV Modules Using Neural Network for Real Time Maximum Power Tracking Control[J].IEEE Transaction on Energy Conversion,1995,10(2):360

同被引文献78

引证文献5

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部