期刊文献+

利用跟踪控制实现单模激光lorenz系统和新系统的混沌同步

Chaos Synchronization between Single-Mode Laser Lorenz System and the New System by tracking control
在线阅读 下载PDF
导出
摘要 分析了单模激光Lorenz系统和新系统的动力学特性。基于非线性反馈控制器的设计,利用跟踪控制使处于混沌和超混沌的两系统之间的拓扑不等价的异结构混沌系统成功地达到了混沌同步,依据线性稳定性理论分析,确定了控制系统的稳定性。数值模拟表明,通过适当地选择反馈增益系数,响应系统得到了有效控制。由于控制过程中无需计算Lyapunov指数,异结构混沌系统间的拓扑结构亦可以有较大差异,可降低混沌控制工作量和提高保密通信的性能。 The dynamic characteristics of single-mode Lorenz system and the new system were analyzed. Based on the design of nonlinear feedback controller, the chaos synchronization was realized by tracking control between two chaos systems which are different in topological structure. The stability of the control system was ensured according as the stability theory and the area of the feedback gain coefficients taken. The results of the artificial simulation have testified that the response system was controlled effectively by choosing properly the feedback gain coefficients. Because the Lyapunov exponent of chaotic system need not to be computed in the control process, the obvious diversity of the topological structures among the chaos systems with different structures can be allowed. The method is to reduce the computation of chaotic control and to improve the performance of the secure communication.
作者 李钢
出处 《激光杂志》 CAS CSCD 北大核心 2007年第3期27-28,共2页 Laser Journal
关键词 混沌同步 跟踪控制 数值模拟 单模激光Lorenz系统 新系统 chaos synchrenization tracking control artificial simulation singlemode laser Lorenz system new system
  • 相关文献

参考文献17

  • 1Pecora L M,Carroll T C.synchronization in chaotic system[J].Phys Rev Lett 1990,64(8):821-824.
  • 2吕翎,李钢,杜增,栾玲.利用跟踪控制实现离散线性系统的混沌化[J].激光杂志,2004,25(2):29-30. 被引量:1
  • 3李钢,邱东超,刘艳,李义.一种连续状态反馈方法控制混合光学双稳系统混沌[J].激光杂志,2005,26(6):31-33. 被引量:1
  • 4于灵慧,房建成.混沌神经网络逆控制的同步及其在保密通信系统中的应用[J].物理学报,2005,54(9):4012-4018. 被引量:22
  • 5Pecora L M,Carroll T L.Driving Systems With Chaotic Signals[J].Phys Rev A,1991,44(4):2374-2383.
  • 6Kocarev L,et al.General approach for chaotic synchronization with application to communication[J].Phys Rev Lett,1995,74(25):5028-5031.
  • 7Sugawara T,et al.Observation of Synchronization in Laser Chaos[J].Phys Rev Lett,1994,72(22):3502-3505.
  • 8Kapitaniak T,et al.Experimental synchronization of chaos using continuous control[J].Int J.Bifurcations Chaos,1994,4(2):483 -488.
  • 9Kocarev L et al.Transitions in dynamic regimes by driving:Ainified method of control and synchronization of chaos[J].Int J.Bifurcations Chaos,1993,3(2):479-483.
  • 10John K,et al.Synchronization of unstable orbits using adaptive control[J].Phys Rev.E,1994,49(6):4843-4848.

二级参考文献36

  • 1刘扬正,费树岷.Genesio-Tesi和Coullet混沌系统之间的非线性反馈同步[J].物理学报,2005,54(8):3486-3490. 被引量:25
  • 2方锦清.超混沌同步及其超混沌控制[J].科学通报,1995,40(4):306-310. 被引量:21
  • 3方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展,1996,16(2):137-202. 被引量:117
  • 4胡刚 萧井华 等.混沌控制[M].上海:上海科技教育出版社,2000..
  • 5S. Trimper, K. Zabrocki. Delay- Controlled Reactions [ J ]. Phys.Lett. (A), 2004, 321(4):205-215.
  • 6E. Ott, C. Grebogi, J. A. York. Controlling chaos[J]. Phys. Rev.Lett., 1990, 64(11): 1196-1199.
  • 7K. Yagasaki, T. Uozumi. Controlling Chaos Using Nonlinear Approximations and Delay Coordinate Embedding [ J ]. Phys. Lett. ( A ),1998,247(2) : 119 - 128.
  • 8L.F. Yang, M. Dolnik, A. M. Zhabotinsky. Oscillatory Clusters in A Model of the Photosensitive Belousov - Zhabotinsky Reaction System with Global Feedback[J]. Phys. Rev. (E), 2000, 62(5):6414-6420.
  • 9J. Guemez, M. A. Matias. Control of Chaos in Unidimensional Map[J]. Phys. Lett. (A), 1993,181(1):29-32.
  • 10K. Pyragas. Continuous Control of Chaos by Self- Controlling feedback[J]. Phys. Lett. (A), 1992,170(6) :421 - 428.

共引文献232

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部