期刊文献+

The quantum Kirchhoff equation and quantum current and energy spectrum of a homogeneous mesoscopic dissipation transmission line 被引量:2

The quantum Kirchhoff equation and quantum current and energy spectrum of a homogeneous mesoscopic dissipation transmission line
在线阅读 下载PDF
导出
摘要 On the basis of quantization of charge, the loop equations of quantum circuits are investigated by using the Helsenberg motion equation for a mesoscopic dissipation transmission line. On the supposition that the system has a symmetry under translation in charge space, the quantum current and the quantum energy spectrum in the mesoscopic transmission llne are given by solving their eigenvalue equations. Results show that the quantum current and the quantum energy spectrum are not only related to the parameters of the transmission llne, but also dependent on the quantized character of the charge obviously. On the basis of quantization of charge, the loop equations of quantum circuits are investigated by using the Helsenberg motion equation for a mesoscopic dissipation transmission line. On the supposition that the system has a symmetry under translation in charge space, the quantum current and the quantum energy spectrum in the mesoscopic transmission llne are given by solving their eigenvalue equations. Results show that the quantum current and the quantum energy spectrum are not only related to the parameters of the transmission llne, but also dependent on the quantized character of the charge obviously.
作者 崔元顺
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第10期3093-3096,共4页 中国物理B(英文版)
基金 Project supported by the Science Foundation of Jiangsu Provincial Education 0ffice, China (Grant No 05KJD140035).
关键词 mesoscopic dissipation transmission line quantum Kirchhoff's equation quantum current quantum energy spectrum mesoscopic dissipation transmission line, quantum Kirchhoff's equation, quantum current, quantum energy spectrum
  • 相关文献

参考文献25

  • 1Landauer R and Biittiker M 1985 Phys. Rev. Lett. 54 2049.
  • 2Cedraschi P, Ponomarenko V V and Buttiker M 2000 Phys. Rev. Lett. 84 346.
  • 3Chen B, Li Y Q and Fang H 1995 Phys. Lett. A 205 121.
  • 4Wang J S, Liu T K and Zhan M S 2000 Chin. Phys. Lett. 17 528.
  • 5Gu Y J 2001 Chin. Phys. 10 490.
  • 6Ji Y H, Luo H M and Liu Q 2005 Chin. Phys. 14 1227.
  • 7Li H Q 2005 Acta Phys. Sin. 54 1361.
  • 8Qiu S Yu and Cai S H 2006 Acta Phys. Sin. 55 816.
  • 9Wang Z Q 2002 Acta Phys. Sin. 51 1808 .
  • 10Long C Y 2003 Acta Phys. Sin. 52 2033.

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部