期刊文献+

基于自适应模糊神经网络的交通流状态预测 被引量:4

Prediction of Traffic Flow Pattern Based on Adaptive Neuro-fuzzy Inference System
在线阅读 下载PDF
导出
摘要 研究交通流状态的分类、识别与预测,建立了基于模糊聚类及模式识别的交通流状态自适应模糊神经推理系统。对大量交通流历史特征数据采用模糊聚类法进行状态分类并进行模式识别,得到系统的原始输入输出数据集。建立交通流状态预测的自适应模糊神经系统,以交通流特征数据及其识别结果作为训练数据集进行系统参数及模糊规则的训练与确定,直到误差在控制范围内,并进行系统检测和复核。仿真及其检测和复核结果表明系统预测的准确率在95%以上。 The clustering, recognition, and prediction of traffic flow patterns were studied. An adaptive neuro-fuzzy inference system (ANFIS) was established based on fuzzy clustering and pattern recognition of traffic flow patterns. Firstly, a large quantity of traffic flow data was classified and identified by fuzzy clustering method and recognition rules. The initial input-output data of ANFIS were obtained. Then, the adaptive neuro-fuzzy system of traffic flow patterns was established. The system trained itself with the data and constructed fuzzy inference rules until the prediction error was under control. At last, the whole system was tested and checked. The results of simulation, testing, and checking illustrate that the accuracy of the prediction system is above 95%.
作者 王辉
机构地区 同济大学
出处 《交通与计算机》 2007年第4期46-49,共4页 Computer and Communications
关键词 交通工程 交通流状态预测 模糊聚类 模式识别 自适应模糊神经推理 traffic engineering traffic flow pattern prediction fuzzy clustering pattern recognition adaptive neuro-fuzzy inference
  • 相关文献

参考文献4

二级参考文献10

  • 1裴继红,博士学位论文,1998年
  • 2Jang J S R. Functional Equivalence between Radial Basis Function Networks and Fuzzy Inference System [J]. IEEE Trans on Neural Networks, 1993, (1): 156-158.
  • 3Hint K J. Extending the Functional Equivalence of Radial Basis Function Network and Fuzzy Inference System [J]. IEEE Trans on Neural Networks, 1996, (3): 776-781.
  • 4Ronald R Yager and Dimitar P Filev. Approximate Clustering via the Mountain Method [J]. IEEE Trans on Systems, Man and Cybernetics, 1994, (8): 1274-1284.
  • 5Moody J, Darken C. Fast Learning in Networks of Locally-tuned Processing Units [J]. Neural Computation, 1989, (11): 281-294.
  • 6Jang J S R, Sun C T and E Mizutani. Neuro-Fuzzy and Soft Computing [M]. Prentice Hall, 1997.
  • 7J S Roger Jang. ANFIS: Adaptive-Network Based Fuzzy Inference Systems [J]. IEEE Trans on System, Man, and Cybernetics, 1993,23(3): 665-685.
  • 8S L Chiu. Fuzzy Model Identification Based on Cluster Estimation [J]. Journal of Intelligent and Fuzzy Systems, 1994,2(3):267-278.
  • 9K. Schittkowski. NLPQL: A fortran subroutine solving constrained nonlinear programming problems[J] 1986,Annals of Operations Research(1-4):485~500
  • 10陈慧萍,王建东,樊春霞.基于自适应神经模糊推理系统的非线性系统控制[J].计算机仿真,2004,21(3):85-87. 被引量:8

共引文献54

同被引文献23

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部