期刊文献+

基于自适应遗传算法的纸币识别预处理 被引量:1

Paper Recognition Based on Adaptive Genetic Algorithm
在线阅读 下载PDF
导出
摘要 描述纸币图像的二值化和字符的分割方法。针对纸币图像的特点,提出一种基于最大方差比的图像二值化算法,并利用自适应遗传算法(Adaptive Genetic Algorithm,AGA)得到最优的阈值。该算法的思想是将图像分成两个类,选取类间方差与类内方差的分离度为适应度函数,当分离度取最大值时对应的灰度值为最优的阈值,实验表明,以此阈值对图像分割能快速准确的对纸币图像二值化。最后讨论基于投影法的纸币字符分割的方法,并且取得比较满意的效果。 This paper mainly introduces the algorithm of currency paper images binary and segmentation of characters. It proposes an image binarization algorithm based on maximal variance, and applies Adaptive Genetic Algorithm (AGA) to calculate the best binarization threshold value of the paper currency. The approach of this algorithm is dividing an image object into two classes firstly. Then choose the separation of level between the inter- class variance and intra - class variance as the fitness function. We can obtain the best threshold when the separation of level is maximal. The experiments illustrate the new algorithm can segment the image accurately and quickly. In the end it discusses the segmentation of currency paper characters based on projection and gets satisfying result.
出处 《计算技术与自动化》 2007年第3期92-95,共4页 Computing Technology and Automation
关键词 自适应遗传算法 二值化 最大方差比 阈值 字符分割 adaptive genetic algorithm binarization maximal variance threshold segmentation
  • 相关文献

参考文献7

  • 1Mori S ,Suen C Y, Yamamoto K. Historical Review of OCR research and development [J] . IEEE TransPAMI , 1996 , 18 (7) : 690 - 706.
  • 2Feng Yang , Zheng Ma, Mei Xie,A Novel Approach for License Plate Character Segmentation [ J ]. ICIEA 2006.
  • 3Jie Bai, YaoQuan Yang, RuiLi Tian, Complicated Image' s Binarization Based On Method Of Maximum Variance [ R ], Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 13- 16 August,2006.
  • 4Yungang Zhang ,Changshui Zhang,A New Algorithm for CharacterSegmentation of License Plate[J]. 2003 IEEE.
  • 5马一德,杜鸿飞,齐春亮.遗传算法在数字图像处理中[CP/OL].http://www.paper.edu.cn.
  • 6赵应丁,刘金刚.基于遗传算法的指纹图像二值化算法研究[J].计算机工程,2006,32(7):169-171. 被引量:12
  • 7Erhu Zhang, Bo Jiang, Jinghong Duan, Zhengzhong Bian, Research On Paper Currency Recognition By Neural Networks [R], Proceedings of the Second International Conference on Machine Learning and Cybernetics; Wan, 2 - 5 November, 2003.

二级参考文献4

  • 1Lin Hong.Fingerprint Enhancement[C].3^rd IEEE Workshop on Applications of Computer Vision,1996-12.
  • 2Maic D,Maltoni D M.Direct Gray-scale Minutiae Detection in FingerPrints[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1997,19(4).
  • 3Otsu N.A Threshold Selection Method from Gray-level Histograms[J].IEEE Trans.on Systems Man and Cybernetics,1979,9(1):62-66.
  • 4Kapur J K,Sahoo P K,Wong A K C.A New Method of Gray-level Picture Thresholding Using the Entropy of the Histogram[J].Computer Vision,Graphics and Image Processing,1985,29(2).

共引文献11

同被引文献12

  • 1苑玮琦,张昱.纸币号码快速识别系统[J].计算机工程,2005,31(24):153-155. 被引量:14
  • 2Rajavelu A.A neural network approach to character recognition[J].Neural Networks,1989,2(5):387-393.
  • 3Sabourin M.Optical character recognition by a neural network[J].Neural networks,1992,55(5):843-852.
  • 4Cordella L.A neural network classifier for OCR using structural descriptions[J].Machine Vision and Applications,1995,8(5):336-342.
  • 5Blumenstein M.A neural based segmentation and recognition technique for handwritten words[J].IEEE International Conference on Neural Networks,1996(3):1738-1742.
  • 6Neumerkel D.Modelling dynamic processes with clustered time-delay neurons[C].Nagoya:Intenational Joint Conference on Neural Networks,1993:1765-1768.
  • 7Cheriet M.Character recognition systems: A guide for students and practitioners[M].USA:Wiley Interscience, 2007.
  • 8Simon H.Neural Networks, a comprehensive foundation[M].2nd ed.USA.Prentice Hall,1998.
  • 9Mark J, Orr L.Introduction to Radial Basis Function Networks[R].Scotland:Center for Cognitive Science, University of Edinburgh, 1996.
  • 10Bishop C M.Neural networks for pattern recognition[M].UK:Oxford University Press,1995.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部