期刊文献+

应用盲分离神经网络预测逐日太阳辐射能 被引量:9

APPLICATION ON FORECAST OF DAY-BY-DAY SOLAR IRRADIANCE BASED ON BLIND SOURCE SEPARATION NEURAL NETWORK
在线阅读 下载PDF
导出
摘要 提出一种应用盲分离神经网络预测逐日太阳辐射能的方法。首先在卷积混合基础上,应用最大化负熵准则分离原始太阳辐射时间序列,从观测数据中剔除不可靠信息;考虑到太阳负荷的特点,将分离后的样本输入到径向基函数神经网络(RBFN)中,通过调整参数训练网络直到满足约束条件为止,由此恢复盲分离所带来的幅值和排列顺序变化;最后分别比较盲分离神经网络、RBFN和BP网络的预测误差值,结果说明本文建立的模型提高了预测的准确度。 A method of forecasting the total solar irradiance based on blind source separation (BSS) neural network was presented. First, we used this method to separate the initial time sequence of day-by-day solar irradiance to eliminate the unreliable information. In consideration of the complex behavior of solar irradiance, either periodic or random, a kind of dynamic neural network, radial basis function neural network RBFN, was used for such case. After that the separating results were supplied to the input layer and were trained through adjusting the number of neurons and the weights in different layers of the network until the errors reached the stop conditions. Finally the forecasting model mentioned in this paper was tested through a practical sample, which indicates that the accuracy of the model is mere satisfactory than without blind source separation. Thus the method proposed in this paper can also be applicable to new energy and other relating fields.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2007年第9期1008-1011,共4页 Acta Energiae Solaris Sinica
基金 辽宁省自然科学基金(20052042) 辽宁省教育厅高等学校科学研究项目(05L284)
关键词 太阳辐射 盲分离 神经网络 径向基函数 solar irradiance blind source separation neural network radial basis function
  • 相关文献

参考文献11

  • 1杨昭,郁文红,张甫仁.建筑物冬季太阳辐射得热分析[J].太阳能学报,2005,26(1):104-109. 被引量:31
  • 2高立新,白桦,陆亚俊.智能化空调设计负荷计算软件的开发[J].计算机应用与软件,2004,21(8):46-47. 被引量:2
  • 3高立新,陆亚俊.空调设计冷负荷计算专家系统的开发[J].暖通空调,2002,32(5):90-92. 被引量:4
  • 4Jutten C, Hemult J. Blind separation of sources, Partl: an adaptive algorithm based on neuromimetic architecture [ J ]. Signal Processing, 1991, 24: 1-10.
  • 5Ypma A, Leshem A, Duin R P W. Blind separation of rotating machine sources: bilinear forms and convolutive mixtures[J]. Neurocomputing, 2002, 49: 349-368.
  • 6Dorvlo A S S, Jervase J A, Al-Lawati A. Solar radiation estimarion using artificial neural networks [ J ]. Applied Energy, 2002, 71(4): 307-319.
  • 7Gelle G, Colas M, Serviere C. Blind source separation: a tool for rotating machine monitoring by vibrations analysis? [ J ]. Journal of Sound and Vibration, 2001, 248(5): 865-885.
  • 8Comon P. Independent component analysis, A new concept? [J]. Signal Processing, 1994, 36: 287-314.
  • 9Zhang S N, Tian S Y. Set up of the hourly solar irradiance model[J]. Journal of Solar Energy, 1997, 18: 273-277.
  • 10杨嘉,吴祥生,王宁,张敏琦.基于Elman型神经网络的空调负荷预测模型[J].重庆大学学报(自然科学版),2002,25(8):25-27. 被引量:17

二级参考文献6

共引文献50

同被引文献113

引证文献9

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部