摘要
实现机翼在不同的飞行状态下的最优气动外形是变弯度自适应机翼的一项关键技术。针对传统铰链机构会使机翼表面产生不连续变化而导致气流提早分离的问题,从全柔性机构实现连续平滑的形状变化的技术出发,以目标形状与实际形状的边界曲线之差最小为优化目标,采用遗传算法(GA)对柔性机构的拓扑、尺寸、形状进行了综合优化。在优化方法上,以二进制编码技术和实数编码技术为基础建立初始离散柔性机构的混合变量遗传算法模型,将其映射为有限元模型并进行了结构分析。在优化过程中引入了渐进结构优化(ESO)算法的思想,消除GA优化过程中产生的自由单元,改善了优化效率和分析结果。结合机翼前缘形状变化实例,基于MATLAB进行优化设计,并用ANSYS10.0对优化结果进行了机构的仿真分析。分析结果表明,所提出的方法合理、有效。
Making aircraft wing vary under different flying speeds is a key technology of variable camber adaptive wing. Although conventional hinged mechanisms can change the wing shape in response to the change in flying speed, the connecting hinges create discontinuities over the wing surface, leading to earlier airflow separation. Genetic algorithm(GA) is used to synthesis fully the compliant mechanisms that can deform an initial shape into a target shape with a continous smooth boundary. The optimization target is the square error between the target curve and the deformed curve. Based on binary and real code technology the mixed variable GA model of initial discrete compliant mechanism is built. The GA model mapped into finite element model for structure analysis. In order to eliminate the free element which is created from GA optimization process, improve the efficiency and make the optimization results better, the idea of evolutionary structural optimization (ESO) is put forward. Based on MATLAB, an example of wing leading edge shows the rationality and efficiency of the method. At last, ANSYS10. 0 is used to verify the leading edge morphing effect.
出处
《航空学报》
EI
CAS
CSCD
北大核心
2007年第5期1230-1235,共6页
Acta Aeronautica et Astronautica Sinica
基金
国家自然科学基金(50675175)
关键词
变弯度自适应机翼
拓扑优化
遗传算法
全柔性机构
渐进结构优化
variable camber adaptive wing
topology optimization
genetic algorithm
fully compliant mechanism
evolutionary structural optimization