摘要
讨论二维区域上两类数学物理方程一次元格式的广义差分法。关于双曲型积分微分方程和Sobolev方程,证明了最优H1,L2和最大模误差估计,其收敛阶与线性有限元方法一致。此外,还获得了近似解的超收敛结果。
A finite volume element generalized difference method is proposed and analyzed for two-dimensional region about two mathematics physics equation. Optimal order error estimates in the H^1 , L2 norms and maximum norm are demonstrated for hyperbolic integration differential equation and Sobolev equation, and the convergence order is the same as the linear finite volume element method. Moreover, superconvergence in the error of the approximate solution is also shown.
出处
《科学技术与工程》
2007年第19期4837-4841,共5页
Science Technology and Engineering
关键词
广义差分法
误差估计
超收敛
generalized difference methods error estimate superconvergence