摘要
针对一类生化系统的稳态优化问题,在已有间接优化方法(IOM)的线性优化问题中引入一个反映S-系统解和原模型解一致性的等式约束,应用Lagrangian乘子法将修正后的非线性优化问题转化为一个等价的线性优化问题,提出了一种改进的稳态优化新算法.该优化算法不仅可以收敛到正确的系统最优解,而且可用现有的线性规划算法去计算.最后将算法应用于几个生化系统的稳态优化中,结果表明,本文提出的优化算法是有效的.
A new algorithm for steady-state optimization of a class of biochemical systems is proposed in this paper. An additional equality constraint to account for the consistency of solutions between the S-system and the original model is introduced into the existing linear optimization problem of the indirect optimization method(IOM). Using the general Lagrangian multiplier method, the resulting optimization problem is then modified as an equivalent linear optimization problem. The optimization algorithm not only converges to the correct optimum solution of biochemical systems, but also can be solved with available linear optimization techniques. Finally, the algorithm is applied to the steady-state optimization of several biochemical systems. The results show the validity of the proposed algorithm.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2007年第4期574-580,共7页
Control Theory & Applications
基金
国家"十五"科技攻关计划资助项目(2001BA204B01).
关键词
稳态优化
间接优化方法
Lagrangian乘子法
生化系统
steady-state optimization
indirect optimization method
Lagrangian multipliers method
biochemical systems