期刊文献+

基于人工神经网络混合油品粘度预测模型研究 被引量:2

Research on the Model of Forecasting the Viscosity of Oil Mixture Based on the BP Neural Network
在线阅读 下载PDF
导出
摘要 在分析前向BP神经网络基本原理的基础上,对3种混油建立了人工神经网络混油粘度预测模型,该模型结构为1-7-1的三层BP网络模型。运用实测数据对BP网络进行训练和仿真。结果表明,三种模型预测误差全在2.5%以内,比前苏联学者提出的混油粘度计算公式——克恩达尔-莫恩罗埃公式和兹达诺夫斯基公式更具有计算精度高、适用性强的特点,可完全满足工程实际需要。 The model of forecasting the viscosity of oil mixture is set up respectively to three different mixtures based on analysis of the basic principle of forward back propagation (BP neural network. The structure of model is 1-7-1 three-layer BP network.. The three BP neural networks are trained and simulated respectively by using practical measuring data. The results show that the errors of three models are all less than 2.5%. It also indicates that the present method has higher accuracy and wider applicability than Kerndal-Munnloe formula and Zdanowski formula proposed by former Soviet scholar and it can well meet the needs of engineering.
出处 《石油与天然气化工》 CAS CSCD 北大核心 2007年第4期335-337,共3页 Chemical engineering of oil & gas
基金 中石化集团公司项目X504007 江苏省油气储运重点实验室资助ZDK0602004
关键词 管道 BP神经网络 混油粘度 预测模型 pipeline, BP neural network, viscosity of oil mixture, forecasting model
  • 相关文献

参考文献5

二级参考文献8

共引文献50

同被引文献18

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部