期刊文献+

SVR在切削颤振状态趋势预测中的应用

Application of Support Vector Regression in Predicting Cutting Chatter Trend
在线阅读 下载PDF
导出
摘要 针对当前准确地预测机床切削颤振状态趋势存在的困难,提出了基于支持向量机回归算法(SVR)的切削颤振状态趋势的预测方法,给出了运用支持向量机进行回归分析时的参数选择原则。研究了基于小波包分解的切削信号特征提取方法,首先将切削信号进行小波包分解,计算信号分解到各频带区间内的能量并对其进行归一化,并将其作为切削信号的特征向量输入到支持向量机回归分析模型。在CA6140车床上进行了数据采集和仿真,结果表明,通过这种方法得到的信号在各频带区间内的能量变化曲线能准确地反映切削颤振的过渡过程,并且通过SVR对其进行趋势预测也取得了比较满意的结果。 Having been encountered the difficulty of properly predicting the cutting chatter trend at present, a novel cutting chatter trend prediction method based on support vector regression algorithm(SVR) was put forward, meanwhile, the principle about how to select the SVR parameters was discussed. Ways about how to extract features from cutting signal process based on wavelet package decomposition were studied. Gabor wavelet basis was used to decompose the cutting signal to 3-order. The energy in each spectrum section was calculated and scaled. The resultswere input to the SVR model. Sampling and simulating on lathe (CA6140), the results turned out that the energy transition curve in each spectrum segment retrieved from above mentioned method gave a fine reflection of the cutting process transition from normal to chatter. The trend predicted by SVR shows a satisfactory consequence.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第17期4086-4089,共4页 Journal of System Simulation
基金 国家自然科学基金资助项目(50375070) 湖南省学位办研究生教研基金资助项目(04B21)
关键词 切削颤振 小波包分解 SVR 趋势预测 cutting chatter wavelet package decomposition SVR trend prediction
  • 相关文献

参考文献12

二级参考文献45

  • 1VladmirNVapnik 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2Vapnik V N. Statistical learning theory[M]. New York, 1998.
  • 3Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245.
  • 4Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
  • 5Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471.
  • 6Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002, 48: 847-861.
  • 7Tay F E H, Cao L J. ε-Descending support vector machines for financial time series forecasting[J]. Neural Processing Letters, 2002, 15(2): 179-195.
  • 8Keoman V, Hadzic I. Support vectors selection by linear programming[A]. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks[J. Como, Italy, 2000, 5: 193-198.
  • 9Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machine[A]. Proc the 1997 IEEE workshop on neural networks for signal processing[C]. Amelea Island, FL, 1997, 276-285.
  • 10Laskov P. Feasible direction decomposition algorithms for training support vector machines[J]. Machine Learning, 2002, 46(1): 315-349.

共引文献203

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部