期刊文献+

一类线性系统卡尔曼滤波器自适应算法 被引量:3

Research on the self-adaptive algorithm of the first type Kalman filter in linear system
在线阅读 下载PDF
导出
摘要 为了解决实际线性系统中系统噪声方差和观测噪声方差未知的问题,提出了一种新的卡尔曼滤波自适应算法,利用新息序列的方差,可以在系统的自身计算过程中逐步估计并校正系统噪声方差和观测噪声方差.系统模拟显示,估计的系统噪声方差和观测噪声方差均收敛于实际的系统噪声方差和观测噪声方差,而且收敛速度比传统卡尔曼滤波要快. In order to solve unknown system noise variance and observation noise variance in practical linear system, a new self-adaptive algorithm for Kalman filter was presented,it made use of the variance of new sequences, which could estimate and correct the system noise variance and the observation noise variance gradually in calculation process. The computer simulation shows that the estimated variance of the system noise and estimated variance of the observation noise converge to the real values more quickly than the traditional one.
出处 《南京工业大学学报(自然科学版)》 CAS 2007年第4期30-33,共4页 Journal of Nanjing Tech University(Natural Science Edition)
基金 江苏省高校自然科学基金资助项目(03KJB110037)
关键词 卡尔曼滤波 白噪声 自适应 Kalman filter white noise self-adaptive
  • 相关文献

参考文献4

二级参考文献4

  • 1Xia Q J,Automatica,1994年,30卷,1333页
  • 2Chui C K,Kalman filtering with Real-Time Applications,1991年
  • 3刘家祥,信号处理,1989年
  • 4李乔,矩阵论八讲,1988年

共引文献13

同被引文献26

  • 1侯青剑,缪栋,彭云辉.卡尔曼滤波在激光陀螺信号处理中的应用[J].计算机测量与控制,2005,13(11):1287-1288. 被引量:10
  • 2熊伟,陈立奎,何友,张晶炜.有色噪声下的不敏卡尔曼滤波器[J].电子与信息学报,2007,29(3):598-600. 被引量:12
  • 3WANG L, SU S W, CELLER B G, et al. Modeling of a gas concentration measurement system [C]// Proceedings of the 27th Annual International Conference of the IEEE EMBS, September 1-4, 2005 Shanghai, China. [S. l]: IEEE, 2005: 6695-6698.
  • 4HINES E L, LLOBET E, GARDNER J W. Electronic noses: a review of signal processing techniques[J]. IEE Proceedings Circuits, Devices & Systems, 1999,146 (6): 297- 310.
  • 5OKAJIMA H, KAKUMA S, UCHIDA K, et al. Measurement of methane gas concentration using an infrared LED [C]// International Joint Conference (SICE-ICASE), Oct, 18-21, 2006, Bexco, Busan, Korea. [S. l]: IEEE, 2006: 1652-1655.
  • 6NI N, CHAN C C. Improvement of the measurement accuracy of HCN gas sensor by using digital signal processing technique [C]// International Quantum Electronics Conference 2005 and the Pacific Rim Conference on Lasers and Electro Optics (CLEO), Aug, 30-02, 2005, Tokyo, Japan. [S. l]: IEEE, 2005: 1176-1178.
  • 7GAO D Q, CHEN W. Simultaneous estimation of odor classes and concentrations using an electronic nose with function approximation model ensembles[J]. Sensors and Actuators, 2007, 120 (2): 584- 594.
  • 8LELEUX D P, CLAPS R, CHEN W, et al. Applications of Kalman filtering to real-time trace gas concentration measurements [J].Applied Physics B Lasers and Optics, 2002, 74 (1): 85-93.
  • 9AVENDANO L E, CASTLLANOS C G, FERRERO J M. Spectrum estimation and adaptive de noising of electrocardiographic signals using Kalman filters[C]// Proceeding of the 33rd Annual International Conference on Computers in Cardiology, Sep. 17- 20, 2006, Valencia, Spain. [S.l]: IEEE, 2006: 925-928.
  • 10XIONG S S, ZHOU Z Y, ZHONG L M, et al. Adaptive filtering of color noise using the Kalman filter algorithm [C]// Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference (IMTC), May. 1-5, 2000, Baltimore, Maryland, USA. [S.l]:IEEE, 2000: 1009-1012.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部