期刊文献+

基于模糊工具箱和ROSETTA的粗糙集数据挖掘 被引量:11

Data Mining with Rough Set Based on Fuzzy Toolbox and ROSETTA
在线阅读 下载PDF
导出
摘要 针对大量连续属性值的数据挖掘,提出了一种基于模糊工具箱和ROSETTA软件的粗糙集数据挖掘方法.在粗糙集理论的基础上,应用模糊工具箱中的模糊聚类方法离散分类连续属性值,并将其转化为粗糙集易于处理的知识表格.应用粗糙集数据挖掘软件ROSETTA对这些知识表格进行知识约简处理.通过约简知识属性和属性值,得到连续属性值的核心知识规则,并以实测数据为例,说明了该方法的实现过程和有效性. Method based on fuzzy toolbox and ROSETTA with rough set to data mining of mass continuous attribute value is proposed. Fuzzy clustering of fuzzy toolbox in existence disperses continuous attribute value and transform it to knowledge sheets which are easy for rough set dealing with. These knowledge sheets are predigested by rough set application software-ROSETTA for data mining. After attributes value and knowledge attributes are predigested, kernel knowledge rulers of the continuous attribute values are obtained. The implement steps and validity of method is explained with the actual data.
出处 《微计算机信息》 北大核心 2007年第18期174-175,178,共3页 Control & Automation
基金 国家自然科学基金委员会创新研究群体科学基金资助(50421703)
关键词 模糊工具箱 ROSETTA 粗糙集 数据挖掘 Fuzzy Toolbox ROSETTA Rough set Data Mining
  • 相关文献

参考文献6

二级参考文献20

  • 1Pawlak Z. Rough set[J]. Int. J. of Computer and Information Science,1982 (11): 341-356.
  • 2Tsumoto Shusaku. Extraction of experts' decision rules from clinical databases using rough set model[J]. Intelligent Data Analysis, 1998,2(1-4): 215-227.
  • 3Hong T P, Wang T T, Wang S L, et al. Learning a coverage set of maximally general fuzzy rules by rough sets[J]. Expert Systems with Applications 2000, 19(2): 97-103.
  • 4Chan Chienchung. A rough set approach to attrobute generalization in data mining [A].Infomation Sciences[C]. 1998,107(1-4): 169-176.
  • 5Nguyen Hoang Phuong, Le Linh Phong, Santiprabhob P,et al. Approach to generating rules for expert systems using rough set theory[A]. IFSA World Congress and 20th NAFIPS International Conference[C]. 2001: 877-882.
  • 6Shen Qiang, Chouchoulas Alexios. A rough-fuzzy approach for generating classification rules[J]. Pattern Recognition, 2002,(35)11:2425-2438.
  • 7Ananthanarayana V S, Narasimha Murty M, Subramanian D K. Tree structure for efficient data mining using rough sets[J]. Pattern Recognition Letters 2003,24(6): 851-862.
  • 8Fayyad U M. On the induction of decision trees for multiple concept learning [D].EECS Department, University of Michigan,1991.
  • 9Fayyad U M, Irani K B. Multi-interval discretization of continuousvalued attributes for classification learning[A]. Proc. 13th IJCAI[C]. 112-119.
  • 10Slowinski R. Rough classification of HSV patients[A]. Intelligent decision support[C]. Kluwer: Roman Slowiuski, 1992,77-94

共引文献545

同被引文献108

引证文献11

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部