期刊文献+

航空发动机的可预测模型建模与应用

AN Aeroengine Forecasting Model and its Applications
在线阅读 下载PDF
导出
摘要 提出了一种基于混沌理论和支持向量的预测方法。通过重构相空间的饱和嵌入维数,确定支持向量机的最佳输入变量;通过计算混沌序列的最大Lyapunov指数,确定支持向量机预测模型的最大有效预测步数;利用支持向量机强大非线性映射能力、网络结构的自动最优化特性,实现时间序列的非线性预测。最后,应用于某型发动机压气机的试车时间序列数据建模与分析,结果证明该方法具有较高的预测精度。 A new support vector forecasting model based on chaos theory is presented in this paper. It adopts support vector machines as nonlinear forecaster and determines network's input variable number through computing reconstruct phase space's saturated embedding dimension. The maximum effective forecasting steps is determined by computing chaos time series' largest Lyapunov exponent. It makes use of support vector machines' strongly nonlinear mapping ability, and network's structure is optimally auto- created. Application results in aeroengine show that the presented method possesses much better precision.
作者 刘莉 徐浩军
出处 《火力与指挥控制》 CSCD 北大核心 2007年第7期54-57,共4页 Fire Control & Command Control
关键词 相空间重构 支持向量机 航空发动机 李雅普诺夫指数 预测 reconstruct phase space, support vector machines, aeroengine, Lyapunov exponent, forecasting
  • 相关文献

参考文献8

  • 1Casdagli M.Nonlinear Prediction of Chaotic Time Series[J].Physica D,1989,35:335-356.
  • 2Kugiumtzis D,Lingiarde O C,Christoph-ersen N.Regularized Local Linear Prediction of Chaotic Time Series[J].Physica D,1998,112:344-360.
  • 3Stefania Tronci,et al.Reconstruction of Chaotic Time Series by Neural Models:A Case Study[J].Neuro Computing,2003,15(5):581-591.
  • 4Cao L,Y.Practical Methods for Determining Minimum Embedding Dimension of a Scalar Time Series[J].Physical,1997,11(10):43-50.
  • 5Eckmann J P,Kamphorst S O,et al.Lyapunov exponent from time series[J].Phys Rev A,1986,34:4971-4979.
  • 6Mukherjee S.Nonlinear Prediction of Chaotic Time Series Using Support Vector Machines[A].IEEE.NNSP'97[C],Amelia Island,1997.
  • 7Chen B J.Load Forecasting Using Support Vector Machines:A Study on EUNITE Competition 2001[D].National Taiwan University,2001.
  • 8Cao L J.Dynamic Support Vector Machines for Non-Stationary Time Series Forecasting[J].Intelligent Data Analysis,2002,27(6):67-83.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部