期刊文献+

用复数自回归模式预报月平均气温 被引量:6

Monthly Temperature Forecasts by Using a Complex Autoregressive Model
在线阅读 下载PDF
导出
摘要 在复数域最小二乘法的基础上,建立了复数自回归模式。数学推导和实例应用表明:这一复数自回归模式不同于将复数序列中的实部和虚部分开来计算的结果,将实部和虚部分开来计算的方法不是真正意义的最小二乘法。应用包括一个任意给定的复数序列和全国160个基本气象台站上历年7月月平均气温。采用距平相关系数和均方根误差两种检验标准,对独立预报结果进行检验,并与其他3种常用统计模型作比较。结果显示:该复数自回归模式确实具有较好的预报效果。 In order to find a new method to improve the skill of short-rang climate prediction, a complex autoregressire model is established based on mathematic derivation of the complex least-square, in which the conventional least-square formula is extended from the real number domain into the complex number domain. This complex least-square solution is an exact analytic formula, and the conventional way is corrected that the real number and the imaginary number are separately calculated to reserve the least-square in the complex number domain. With a spatial expansion of Fourier series on monthly temperature fields in China's Mainland, the applications of this complex autoregressive model (M1) to monthly temperature forecasts show a high skill comparing with other conventional statistical models in predicting monthly temperature anomalies for July and most other months at 160 meteorological stations in China's Mainland. The conventional statistical models include an autoregressive model in the complex number domain that the real number and the imaginary number are separately disposed (M2), an autoregressive model in the real number domain (M3), and a persistence-forecast model (M4). For example, the anomaly correlation coefficient and root mean square error prediction for July by the M1 reaches up to 0. 185 and 1.079 ℃ comparing with 0.089 and 1. 113℃ by the M2, 0.061 and 1. 147℃ by the M3, and 0. 064 and 1. 449 ℃ by the M4 respectively, although the M2 does somewhat higher skill than the M3 and M4. It is expected that a better method of spatial expansion should improve further the forecast skill. The complex least-square derived in this study is an exact solution comparing with the conventional method that the real part and the imaginary part are separately calculated. In fact, the conventional method does not reach the actual least square in a complex number domain. The forecast experiments suggest that the complex least-square is an effective technique to dispose a complex number series, and may be applied to the linear and non-linear regression and similar statistic methods that are based on the least-square method. Developments of complex statistical models could be a perspective way to improve simulation and forecast skill in complex number fields in meteorology and relative disciplines.
出处 《应用气象学报》 CSCD 北大核心 2007年第4期435-441,共7页 Journal of Applied Meteorological Science
基金 国家自然科学基金项目(40175027)资助
关键词 复数自回归模式 月平均气温预报 傅立叶变换 complex autoregressive model monthly temperature forecast Fourier transform
  • 相关文献

参考文献12

  • 1盛聚,谢式千,潘承毅.概率论与数理统计(第二版).北京:高等教育出版社,1995.279-290,403.
  • 2郭秉荣,史久恩,丑纪范.使用多时刻历史资料的动力统计长期天气数值预报模式..第二次全国数值天气预报会议论文集.北京:科学出版社,1980.115-126.
  • 3Dash P K,Jena R K,Panda G,et al.An extended comp lex Kalman filter for frequency measurement of distorted signals.IEEE Trans Instrumentation and Measurement,2002,49 (4):1569-1574.
  • 4崔博文,陈剑,陈心昭,任章.复参数最小二乘估计方法[J].安徽大学学报(自然科学版),2005,29(3):5-10. 被引量:5
  • 5Rasmusson E M,Arkin P A,Chen W Y.Biennial variation in surface temperature over the United States as revealed by singular decomposition.Mon Wea Rev,1981,109:587-598.
  • 6Barnett T P.Interaction of the monsoon and Pacific trade wind systems at interannual time scales.Part I:The equatorial zone.Mon Wea Rev,1983,111:756-773.
  • 7谷湘潜.一个基于大气自忆原理的谱模式[J].科学通报,1998,43(9):909-917. 被引量:28
  • 8曹鸿兴,谷湘潜.自忆谱模式对中期环流预报的改进[J].自然科学进展(国家重点实验室通讯),2001,11(3):309-313. 被引量:7
  • 9Hasselmann K,Barnett T P.Techniques of linear prediction for system with periodic statistics.J Atmos Sci,1981,38:2275-2283.
  • 10江剑民.北半球500毫巴候平均图的波谱分析和预报[J].气象学报,1983,41(4):433-443.

二级参考文献21

  • 1曹鸿兴.大气运动的自忆性方程[J].中国科学(B辑),1993,23(1):104-112. 被引量:79
  • 2丑纪范.天气数值预报中使用过去资料的问题[J].中国科学,1974,6:635-644.
  • 3丑纪范.四维同化的理论和新方法.数值天然预报中若干新技术[M].北京:气象出版社,1995.262.
  • 4郑庆林 等.使用多时刻观测资料的数值天气预报新模式[J].中国科学,1978,(2):289-289.
  • 5方崇智 萧德云.过程辨识[M].清华大学出版社,1989..
  • 6丑纪范,长期数值天气预报,1995年,6页
  • 7曹鸿兴,中国科学.B,1993年,23卷,1期,104页
  • 8雷兆崇,数值预报中的谱方法,1991年,95页
  • 9团体著者,资料同化和中期数值预报,1991年,61页
  • 10蔡季冰,系统辨识,1989年,114页

共引文献125

同被引文献91

引证文献6

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部