摘要
Ricci和Stein证明了一类振荡奇异积分算子的Lp(Rn)(1<p<∞)有界性,对于推广的一类具μ-Calderón-Zygmund核的振荡奇异积分算子的Lp(Rn)(1<P<∞)有界性已得到;我们利用权函数的性质,证明了此类具μ-Calderón-Zygmund核的振荡奇异积分算子的加权Lp有界结果。
Ricci and Stein showed that some oscillatory singular integral operators are bounded on L^p (R^n) (1〈p〈∞). The boundedness of some generalized oscillatory singular integral operators with μ-Calderón-Zygmund kernel was obtained. By the properties of weight functions, we get the L^p (R^n) (1〈p〈∞) boundedness of the oscillatory singular integral operators with μ-Calderón-Zygmund kernel.
出处
《青岛大学学报(自然科学版)》
CAS
2007年第2期1-4,21,共5页
Journal of Qingdao University(Natural Science Edition)