摘要
设{X_n,n≥1}是一严平稳的ρ-混合的正的随机变量序列,且EX_1=μ>0, Var(X_1)=σ~2,记S_n=Σ_(i=1)~n X_i和γ=σ/μ,在较弱的条件下,证明了对任意的x,,其中σ_1~2=1+2/(σ~2)∑_(j=2)~∞Cov(X_1,X_j),F(·)是随机变量e^(2^(1/2)N)的分布函数,N是标准正态随机变量,我们的结果推广了i.i.d时的情形.
Let {Xn,n≥1} be a strictly stationary p-mixing sequence of positive random X variables with EX1=μ〉0, and Var(X1)=σ^2,Denote Sn=Σ(i=1)^n Xi and γ=σ/μ, Under suitable conditions, we show that for any x,
limn→∞ 1/logn∑k=1^n 1/k I{(∏j=1^kSj/k!μ^k)^1/(γσ1√k≤k}=F(x),a.s.,
where σ1^2=1+2/(σ^2)∑(j=2)∞Cov(X1,Xj),F(·) is the distribution function of the random variable e^(2(1/2)N) is a standard normal random variable. The result of Khurelbaatar and Rempata is a special case of ours.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2007年第4期729-736,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10471126)