期刊文献+

超磁致伸缩微位移驱动器的非线性迟滞建模及控制方法 被引量:18

NONLINEAR HYSTERESIS MODEL AND CONTROL OF MAGNETOSTRICTIVE MICROPOSITIONER
在线阅读 下载PDF
导出
摘要 针对超磁致伸缩微位移驱动器(GMA)的非线性迟滞特性,通过密度函数法和F函数法建立GMA的两种Preisach数值模型,仿真和试验表明F函数法对滞回曲线的预测效果优于密度函数法。为将Preisach数值模型应用于GMA的实际控制系统,提出一种Preisach实时数字补偿算法,建立基于Preisach前馈补偿的PID控制模型,分别采用开环、普通PID和带Preisach前馈补偿的PID三种控制器对GMA的位置跟踪和轨迹跟踪两种控制问题进行试验研究,结果表明带Preisach前馈补偿的PID控制器可显著提高GMA的响应速度和跟踪精度,使GMA在100μm量程内的位置跟踪和轨迹跟踪误差分别达到3μm、2μm。 Aiming at the non-linearity and hysteresis of giant magnetostrictive actuator (GMA), two numerical realization of Preisach model by density function method (DFM) and F fuction method (FFM) are present. Experiment and simulation show that FFM is better than DFM over predict precision of hysteresis loops. To make the Preisach numerical model in application to practical control of GMA, a real-time numerical compensation algorithm for preisach model is pointed out, and a PID plus Preisach feedforward compensation (PFC) control model is build up, open-loop, general PID and PID plus PFC are independently applied to GMA for the position tracking and trajectory tracking. Experiment results reveal that PID plus PFC has faster response, higher precision of position tracking and trajectory tracking than open-loop and general P/D, 3μm position tracking error and 2 μm trajectory tracking error in the range of 100 μm can be attained by PID plus PFC.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2007年第6期55-61,共7页 Journal of Mechanical Engineering
基金 中国博士后科学基金(20060390337) 国家自然科学基金(50105019)资助项目。
关键词 超磁致伸缩 迟滞 控制 Magnetostrictive Hysteresis Control
  • 相关文献

参考文献10

  • 1吴博达,鄂世举,杨志刚,程光明.压电驱动与控制技术的发展与应用[J].机械工程学报,2003,39(10):79-85. 被引量:50
  • 2JOSHI C H.Cryogenic magnetostrictive actuators and stepper motors[J].Proceedings of SPIE,2000,4 131:240-249.
  • 3VENKATARAMAN R,KRISHNAPRASAD P S.A novel algorithm for the inversion of the Preisach operator[J].Proceedings of SPIE,2000,3 984:404-414.
  • 4VISONE C,SERPICO C.Hysteresis operators for the modeling of magnetostrictive materials[J].Journal of physiea B,2001,306:78-83.
  • 5TAN X B,VENKATARAMAN R,KRISHNAPRASAD P S.Control of hysteresis:theory and experimental results[J].Proceedings of SPIE,2001,4 326:101-112.
  • 6HUGHES D,WEN J T.Preisach modeling and compensation for smart material hysteresis[J].Proceedings of SPIE,2 442:328-336.
  • 7MAYERGOYZ I D.Dynamic vector Preisach models of hysteresis[J].J.Appl.Phys,1991,69(8):4 829-4 831.
  • 8GE P,JOUANEH M.Modeling hysteresis in piezoceramic actuators[J].Precision Eng.1995,17:211-221.
  • 9RESTORFF J B,SAVAGE H T,CLARK A E.Preisach modeling of hysteresis in Terfenol[J].J.Appl.Phys.,1990,67(9):5 016-5 018.
  • 10贾振元,杨兴,郭东明,郭丽莎.超磁致伸缩微位移执行器控制方法的研究[J].仪器仪表学报,2002,23(3):288-290. 被引量:8

二级参考文献19

共引文献56

同被引文献197

引证文献18

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部