期刊文献+

利用函数值信息的修正多步拟牛顿法 被引量:5

MODIFIED MULTI-STEP QUASI-NEWTON METHODS WITH ON THE USE FUNCTION VALUE INFORMATION
在线阅读 下载PDF
导出
摘要 拟牛顿方法在无约束优化中起着核心的作用.一般的拟牛顿方法是在每一步的迭代中,利用上一步产生的梯度信息,建立一个拟牛顿方程,进而求得目标函数Hes- sian阵的近似.多步拟牛顿法则是利用前m(m≥0)步的梯度信息,通过插值多项式建立一个扩展的拟牛顿方程.这两种方法的共同缺点是没有利用已知的函数值信息.本文在标准多步拟牛顿法基础上,充分利用函数值信息,构造出一个修正的带有向量参数的多步拟牛顿方程,该修正方程的多步拟牛顿法保持了较好的正定性和局部收敛性,且效率较高.数值实验也表明这个修正的算法在解决中,高维问题中比标准的多步拟牛顿方法有着更好的数值效果. Quasi-Newton methods play a core role in unconstrained optimization. The usual quasiNewton methods, at each iteration, employ the gradients deriving from the former step and construct a quasi-Newton equation and derive the objective Hessian approximation. Multi-step methods construct a generalized quasi-Newton equation by means of interpolating polynomials and employing the gradients deriving from the previous m(m≥ 0) steps. The common drawbacks of the two methods are that they ignore the available function value information. In this paper, We construct a modified multi-step quasiNewton equation with a vector parameter which uses available function value information basing on normal multi-step quasi-Newton methods. The modified multi-step methods maintain the properties of positive-definiteness and local convergence and are more effective. Numerical experiments indicate that this modified algorithm has better numerical results than normal multi-step quasi- Newton methods in solving middle-large dimension problems.
作者 怀丽波
机构地区 南京大学数学系
出处 《南京大学学报(数学半年刊)》 CAS 2007年第1期142-150,共9页 Journal of Nanjing University(Mathematical Biquarterly)
关键词 无约束优化 拟牛顿方程 多步拟牛顿方法 unconstrained optimization, Quasi-Newton, Multi-step Quasi-Newton methods
  • 相关文献

参考文献9

  • 1Ford J A and Moghrabi I A. Multi-step Quasi-Newton Methods for Optimization. Journal of Computational and Applied Mathematics, 1994, 50: 305-323.
  • 2Zhang J Z, Deng N Y and Chen L H. New Quasi-Newton Equation and Related Methods for Unconstrained Optimazation. Journal of Optimazition Theory and Applications, 1999, 102: 147- 167.
  • 3Zhang J Z and Xu C X. Properties and Numerical Performance of Quasi-Newton Methods with Modified Quasi-Newton Equations. Journal of Computational and Applied Mathematics, 2001, 137:269-278.
  • 4Moghrabi I A and Ford J A. A Nonlinear Model for Function-value Multi-step Methods. NMCM'98 -Conference on Numerical Methods and Computational Mechanics (University of Miskolc, Hungary;),August, 1998.
  • 5Broyden C G, Dennis Jr J E and Mot e J J. On the Local and Superlinear Convergence of Quasi-Newton Methods. Journal of Inst. Math. Applic, 1973, 12: 223-245.
  • 6Broyden C G and Dennis J E. The Convergence of a Class of Double-rank Minimization Algorithms I: General considerations. Journal of Inst. Math. Appl., 1970, 6: 76-90.
  • 7Broyden C G and Dennis J E. The Convergence of a Class of Double-rank Minimization Algorithms Ⅱ:the new algorithm. Journal of Inst. Math. Appl., 1970, 6: 222-231.
  • 8More J J, Garbow B S and Hillstrom K E. Testing Unconstrained Optimization Software. ACM Trans. Math. Software, 1994, 7: 17-41.
  • 9袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2001..

共引文献41

同被引文献35

  • 1姜波,徐家旺.非线性代数方程组的数值解法比较[J].沈阳航空工业学院学报,2003,20(3):72-74. 被引量:7
  • 2曹红松,陈国光.在利用地磁探测确定弹体滚转姿态时的使用域分析[J].弹箭与制导学报,2005,25(2):66-68. 被引量:14
  • 3Davidon W C. Conic Approximation and Collinear Scalings for Optimizers[J]. SIAM J Numer Anal, 1980,17.268-281.
  • 4Gourgeon H, Nocedal J. A Conic Algorithm for Optimization[R]. London: Academic Press, 1981.
  • 5Liu D, Nocedal J. Algorithm with Conic Termiza- tion for Nonlinear Optomization[J]. SIAM J Cornput, 1989,10(1) :1-17.
  • 6王海滨.基于新拟牛顿方程的一类超线性收敛的改进BFGS算法[J].兰州理工大学学报,2007,33(4):150-152. 被引量:5
  • 7袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2001..
  • 8Yuan Y X. A modified BFGS algorithm for unconstrained optimization [J]. IMA J. Numer. Anal., 1991, 11(3): 325-332.
  • 9Zhang J Z, Xu'C X. Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations [J]. Journal of Computational and Applied Mathematics, 2001. 137(2): 269-278.
  • 10Wei Z X, Li G Y, Qi L Q. New quasi-Newton methods for unconstrained optimization problems [J]. Applied Mathematics and Computation, 2006, 175(2): 1156-1188.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部