期刊文献+

基于EM算法的图像融合质量评价 被引量:8

Evaluation of image fusion quality based on EM algorithm
在线阅读 下载PDF
导出
摘要 为提出一种量化评价经图像融合所产生的结果图像的质量评价方法,采用一种混合瑞利(Rayleigh)概率密度函数(pdfs)对图像边缘强度直方图建模,混合模型中各项的参数和权重通过EM算法迭代估算得到。在建立的混合瑞利概率密度函数模型中,最小参数混合项对应图像的弱边缘,最大参数混合项对应图像的强边缘。因此,取最小参数项的标准方差作为噪声的标准方差估计,实现噪声盲估计;取最大参数项的标准方差作为图像模糊度的定量评价指标。通过估算混合瑞利pdfs模型中的参数变化可以评价图像质量。与其它图像质量评价方法相比,这种方法的最大优点是不需要知道图像构造等细节信息,不需要图像变换,只要有原始图像即可对其进行评价。而且对较小噪声也能较精确地估计。研究表明这个技术很强健,并对要评估的图像依赖很小。 The purpose of the research is to put forward a method for quantitatively evaluating the quality of a image obtained by fusing several images. The method of the research is to model the image edge intensity using a mixture Rayleigh probability density functions (pdfs). The parameters and weights of mixture terms in the mixture model can be obtained using the EM iterative algorithm. The term with the smallest parameter corresponds to the weak edges, or the low-frequency background fluctuation. The term with the largest parameter corresponds to the strong edges. Therefore, the smallest variance parameter is considered as the noise variance estimation. Thus the blind estimation of the noise can be realized. And the largest variance parameter can be used to monitor the blurring. The results and conclusions of the research are that the image quality can be evaluated by studying the change of parameters in the mixture model. Compared with other image quality evaluation methods, this technique only needs the images to be evaluated and does not use detailed information about the formation of the images, and need not transform the images. The approach can be employed to estimate the smaller noise. These are the advantages of the approach. The investigation shows that this technique is quite robust and has low dependency on the image under evaluation.
作者 邓巍 丁为民
出处 《农业工程学报》 EI CAS CSCD 北大核心 2007年第5期168-172,共5页 Transactions of the Chinese Society of Agricultural Engineering
关键词 图像融合 图像质量评价 混合瑞利概率密度函数(pdfs) EM算法 image fusion evaluation of image quality mixture Rayleigh probability density functions (pdfs) EM algorithm
  • 相关文献

参考文献14

二级参考文献40

  • 1曾喜闻,伍亚萍.基于小波变换的行波信号的去噪滤波[J].电力科学与工程,2004,20(2):31-33. 被引量:5
  • 2刘贵喜,赵曙光,陈文锦.红外与可见光图像融合的多分辨率方法[J].光电子.激光,2004,15(8):980-984. 被引量:24
  • 3郁文贤,雍少为,郭桂蓉.多传感器信息融合技术述评[J].国防科技大学学报,1994,16(3):1-11. 被引量:158
  • 4胡江华,柏连发,张保民.象素级多传感器图像融合技术[J].南京理工大学学报,1996,20(5):453-456. 被引量:14
  • 5蒋晓瑜.基于小波变换和伪彩色方法的多重图像融合算法研究[M].北京:北京理工大学光电工程系,1997..
  • 6Bilmes J A.A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models.Department of Electrical Engineering and Computer Science, U.C.Berkeley TR-97-021,April 1998.
  • 7Roberts S J.Bayesian approaches to Gaussian mixture modeling.IEEE Trans.on Pattern Analysis and Machine Intelligence, 1998,20( 11): 1133-1142.
  • 8Zhang Z,IEEE Int Conference on Acoustic Speech and Signal Processing,1998年,5卷,2897页
  • 9李弼程 罗建书.小波分析及其应用[M].北京:电子工业出版社,2002..
  • 10Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage. Biometrika, 1994,14(6): 425-455.

共引文献174

同被引文献96

引证文献8

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部