期刊文献+

一种新的快速求核算法 被引量:10

New Algorithm for Quick Computing Core
在线阅读 下载PDF
导出
摘要 为了解决核影响属性约简算法的速度和效率等问题,提出了一种基于正区域的求核算法.采用基数排序思想计算正区域,分别得到决策属性正区域的条件属性集和除决策属性正区域的一个条件属性之外的条件属性集,并且计算这2种属性集的基数之差,以判断该条件属性是否是核属性,依次判断所有条件属性,从而快速获得所需要的核.基于正区域求核算法的时间复杂度为O(|C||U|).实验结果表明,利用该算法求核,所耗时间将随对象数的增加呈线性增长,且当对象数最大时,求核所耗时间仅为对比算法的0.6%,同时证明了该算法对各种数据集均有很好的适应性. In order to improve the speed and efficiency of reduction algorithm of core influence attributes, a new core computation algorithm based on positive region is provided. The positive region based on radix sorting is used to get the positive region condition attributes set of decision attributes and the condition attribute set which excludes one of the condition attributes of decision attribute positive region. Then the difference between the two radices of positive regions is calculated to judge whether the condition attribute is a core attribute, thereby all the condition attributes are judged and the required core is quickly acquired. The time complexity of the proposed algorithm is O(|C|| U|). Experimental results show that the core computation time increases linearly with the increasing number of entries, and the computation time is only 0. 6% of the contrastive algorithm when the entries is maximum. Meanwhile, it is shown that the algorithm is well suitable for various kinds of data sets.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第6期688-691,共4页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目(2006AA01Z210)
关键词 属性约简 基数排序 正区域 attribute reduction radix sorting positive region core
  • 相关文献

参考文献10

二级参考文献37

  • 1叶东毅,陈昭炯.一个新的二进制可辨识矩阵及其核的计算[J].小型微型计算机系统,2004,25(6):965-967. 被引量:49
  • 2杨明,孙志挥.改进的差别矩阵及其求核方法[J].复旦学报(自然科学版),2004,43(5):865-868. 被引量:71
  • 3曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 4刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 5Pawlak Z. Rough sets[J]. International Journal of Information and Computer Science, 1982, 11(5):341-356.
  • 6Pawlak Z. Rough set approach to multi-attribute decision analysis[J].European Journal of Operational Research, 1994,11:443-459.
  • 7Hu X H, Cercone N. Learning in relational databases: A rough set approach[J]. Computational Intelligence: An International Journal, 1995, 11(2):323-338.
  • 8Jelonek J, Krawiec K, Slowinski R. Rough Set reduction of attributes and their domains for neural networks[J]. Computational Intelligence, 1995,11(2):339-347.
  • 9苗夺谦,王珏.基于粗糙集的多变量决策树构造方法[J].软件学报,1997,8(6):425-431. 被引量:121
  • 10Hu Xiao Hua,Cercone N.Learning in relational databases:a rough set approach[J].Computational Intelligence,1995;11 (2):323~337

共引文献479

同被引文献79

引证文献10

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部