期刊文献+

时滞多变量系统PCA优化建模 被引量:1

PCA optimal modeling for time delay multivariable system
在线阅读 下载PDF
导出
摘要 主元分析(PCA)在工业生产过程的产品质量控制与故障诊断等方面已得到广泛应用,然而当过程的变量间存在着未知时滞性时,必须确定数据间的对应关系,否则PCA模型将会不准.基于此,提出了PCA优化建模方法.该方法以过程变量间的时滞常数为优化变量,在分析PCA模型特点基础上,确定主成分个数和SPE统计量为综合目标函数,并建立模型约束条件,采用遗传算法求解.最后给出了仿真实例,证明了所提出方法的有效性. As an effective method to extract correlations among variables, principal component analysis (PCA) is widely applied to multivariate statistical process monitoring, fault diagnosis and quality control. For process modeling with unknown time delay, time delay parameters are determined by using the conventional PCA method. Otherwise, the model will be so inaccurate that influences the monitoring capability. Therefore the PCA optimal modeling method is proposed, in which process variable time delay parameter is used as optimal variable. Based on the analysis characteristic of PCA model, the integration target function of PCs and SPE statistics is designed, and the restriction condition is constructed. The genetic algorithm is adopted for obtaining the solution of optimal model. A simulation result shows that effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2007年第6期707-710,共4页 Control and Decision
基金 国家自然科学基金项目(60374003)
关键词 主元分析 优化模型 遗传算法 时滞 Principal component analysis Optimal model Genetic algorithm Time delay
  • 相关文献

参考文献7

二级参考文献22

  • 1王成栋,朱永生,张优云.自适应伪并行遗传算法及其性能分析[J].小型微型计算机系统,2004,25(7):1313-1316. 被引量:11
  • 2孙增圻,邓志东.类似CMAC的模糊神经网络及其在控制中的应用[J].清华大学学报(自然科学版),1996,36(5):17-23. 被引量:8
  • 3白方周 庞国仲.多变量频域理论与设计技术[M].合肥:中国科学技术大学出版社,1990..
  • 4顾国贤.啤酒发酵[M].无锡:无锡轻工业学院,1992..
  • 5陈兆宽,计算机过程软件设计,1993年
  • 6顾国贤,啤酒发酵,1992年
  • 7庞国仲,多变量控制系统实践,1990年
  • 8白方周,多变量频域理论与设计技术,1990年
  • 9吴广玉,系统辩识与自适应控制,1987年
  • 10Albus J. S. A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC) [J]. Journal of Dynamic System, Measurement and Control, 1975, 97(3): 220-227.

共引文献76

同被引文献24

  • 1魏桃英.关于黄酒发酵过程中pH的探讨[J].酿酒科技,2005(3):78-79. 被引量:10
  • 2刘毅,王海清.采用最小二乘支持向量机的青霉素发酵过程建模研究[J].生物工程学报,2006,22(1):144-149. 被引量:27
  • 3Wiechert W. 13C metabolic flux analysis[J]. Metabolic Engineering, 2001, 3 (3): 195-206.
  • 4Kauffman K J, Prakash P, Edwards J S. Advances in flux balance analysis[J]. Current Opinion in Biotechnology, 2003, 14 (5):491-496.
  • 5Curto R, Sorribas A, Cascante M. Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using bioebemical systems theory and metabolic control analysis: Model definition and nomenclature[J]. Mathematical Biosciences, 1995, 130(1):25-50.
  • 6Jeyamkondan S, Jayas D S, Holley R A. Microbial growth modelling with artificial neural networks[J]. International Journal of Food Microbiology, 2001, 64(3 ):343-354.
  • 7Pugh G A. Synthetic neural networks for process control[J]. Computers & Industrial Engineering, 1989, 17(1-4): 24-26.
  • 8Kroumov A D, M6denes A N, Tait M C D A. Development of new unstructured model for simultaneous saccharification and fermentation of starch to ethanol by recombinant strain[J]. Biochemical Engineering Journal, 2006, 28(3): 243-255.
  • 9Jones K D, Kompala D S. Cybernetic model of the growth dynamics ofSaccharomyces cerevisiae in batch and continuous cultures[J]. Journal of Biotechnology, 1999,71 (1-3): 105-131.
  • 10Ramakrishna R, Ramkrishna D, Konopka A E. Cybernetic modeling of growth in mixed, substitutable substrate environments: Preferential and simultaneous utilization[J]. Biotechnology and Bioengineering, 1996,52(1): 141-151.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部