期刊文献+

云岭隧道围岩物理力学参数正演反分析 被引量:8

Direct Back Analysis of Physical and Mechanical Parameters of Yunling Tunnel Surrounding Rock
在线阅读 下载PDF
导出
摘要 以FLAC差分程序作为模拟隧道开挖的正演工具,结合BP神经网络程序,对云岭隧道软弱岩层施工过程中量测的围岩位移进行反分析,确定围岩物理力学参数。将反分析结果代入FLAC程序进行正分析计算,计算位移与实测位移符合很好,证明了基于FLAC的隧道BP神经网络位移反分析的可行性。结果表明,反分析所得围岩物理力学参数改进了原勘测资料中的建议值,对隧道围岩稳定性评价及信息化设计具用实际意义。 With FLAC program as a tool of forward process in the simulation of tunnel excavating and combined with the program of BP Neural networks, a back analysis on the unsteady surrounding rock displacements was carried out and the physical and mechanical parameters of the surrounding rock were determined. The forward analysis was conducted with the application of the back analysis results in FLAC program. It is found that the results agree with each other very well for the calculated and the measured displacements. So, the back analysis is proved to be feasible, which combines with BP Neural networks and FLAC program. The results show that the physical and mechanical parameters gotten through the back analysis can improve on the proposed parameters and the analytical results are important to the stability analysis of the tunnel surrounding rock and to informational design.
出处 《华中科技大学学报(城市科学版)》 CAS 2007年第2期78-80,共3页 Journal of Huazhong University of Science and Technology
关键词 隧道 反分析 FLAC BP神经网络 tunnel back analysis FLAC BP neural networks
  • 相关文献

参考文献6

二级参考文献18

  • 1亢会明.隧道围岩稳定性分析智能决策支持系统研究,重庆大学博士学位论文[M].重庆,2001..
  • 2欧春平.[D].大连:大连理工大学,1998.61-64.
  • 3邹喜正.煤矿巷道围岩稳定性分类[M].徐州:中国矿业大学出版社,1995..
  • 4Sakurai S, Takeuchi K. Back-analysis by measured displacement of tunnel[J]. Rock Mechanics and Rock Engineering, 1983,16(4):252-255.
  • 5Coetzee M J. FLAC basic[M]. Minnesota: Itasca Consulting Group Inc, 1993.1-7.
  • 6Hoek E, Brown E T. Underground excavation in rock[M]. London: The Institute of Mining and Metallurgy, 1980.132-135.
  • 7Neter J, Wasserman W. Applied linear statistical models[M]. Colorado:IRWIN Inc, 1990.205-206.
  • 8Kung S Y,Hwang J N. An algebraic projection analysis for optimal hidden units size and learning rate back propagation learning[J]. Proc.of ICJNN, 1998,19(1):25-27.
  • 9Mukherje A. Application of artificial neural networks instructural design expert system[J]. Computers & Structures, 1995,54(3):205-210.
  • 10Hojjat A. Counterpropagation neural networks in structural engineering[J]. Journal of Structural Engineering, 1995,12(8):495-501.

共引文献76

同被引文献52

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部