期刊文献+

一类扩散循环系统正解的存在性与稳定性 被引量:5

Existence and Stability of Positive Solutions for a Circulatory System with Diffusion
在线阅读 下载PDF
导出
摘要 利用上下解方法及全藕合线性互惠系统的最大值原理,研究了一类非线性椭圆系统,给出了其正解存在的充分必要条件,同时也得到了其正解局部稳定的某些结果. In this paper we use the sub and supersolution methods and the maximum principle of the fully coupled linear cooperative systems to study a class of nonlinear elliptic cooperative system. The necessary and sufficient conditions for the existence of the positive solutions were established, and some local stability results were also obtained.
出处 《生物数学学报》 CSCD 北大核心 2007年第1期73-80,共8页 Journal of Biomathematics
基金 国家自然科学基金(10071048) 天津大学青年教师基金 南开大学-天津大学刘徽应用数学中心资助项目.
关键词 互惠系统 最大值原理 正解 上下解方法 特征值 Cooperative system Positive solutions Sub and supersolution methods Eigenvalue Strong maximum principle
  • 相关文献

参考文献12

  • 1Arino O.,Montero J.A.Optirnal control of a nonlinear elliptic population system[J].Proc.Edinburgh Math.Soc 2000,43(2):225-241.
  • 2Canada A.,Magal P.Montero J.A.Optimal control of harvesting in a nonlinear elliptic system arisng from population dynamics[J].Jour.Math.Anal.and Applications,2001,254(2):571-586.
  • 3Molina-meyer M.Existence and uniqueness of coexistence states for some nonlinear elliptic systems[J].Nonlinear Anal.TMA,1995,25(3):279-296.
  • 4Molina-meyer M.Global attractivity and singular perturbation for a class of nonlinear cooperative systems[J].J Differential Equation,1996,128(2):347-378.
  • 5López-gómez J.,Molina-meyer M.The maximum principle for co-operative weakly coupled elliptic systems and some applications[J].Differential and Integral Equations,1994,7(2):383-398.
  • 6Sweers G.Strong positivity in C(-Ω)for elliptic systems[J].Math.Zeit.,1992,209(2):251-271.
  • 7Pao C.V.Nonlinear parabolic and elliptic equations[M].New York,Plenum Press,1992.
  • 8Allegretto w.Sturmian theorems for second order systems[J].Proc.Amer.Math.Soc.,1985,94(2):291-296.
  • 9Cantrell R.S.,Schmidt,K.On the eigenvalue problems for coupled elliptic systems[J].SIAM J.Math.Anal.,1986,17(4):850-862.
  • 10Henry D.Geometric theory of semilinear parabolic equations[M].Lecture Notes in Mathematics 840,Berlin/New York,springer-Verlag,1981.

同被引文献42

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部