期刊文献+

用有序FP-tree挖掘最大频繁项集 被引量:7

Mining maximal frequent itemsets using the ordered FP-tree
在线阅读 下载PDF
导出
摘要 提出了完全前缀路径和有序FP-tree的概念,给出根据数据项所在的层建立有序FP-tree的方法,利用有序FP-tree表示数据.提出用有序FP-tree中的完全前缀路径进行最大频繁项集挖掘的算法——MFIM算法,该算法利用有序FP-tree中的完全前缀路径对挖掘算法进行优化.实验结果表明,该算法对于浓密数据集中挖掘长模式具有较好的性能. The ordered FP-tree and complete prefix path are proposed. A method of constructing the ordered FP-tree is presented according to the level of nodes. The ordered FP-tree is used to compress the dataset. The maximal frequent itemsets mining algorithm is presented. The complete prefix path is used to optimize the maximal frequent itemsets mining. The experiment result shows that the algorithm has better performance for the long pattern mining in density datasets.
出处 《控制与决策》 EI CSCD 北大核心 2007年第5期520-524,共5页 Control and Decision
基金 国家973预研项目(2001CCA00700) 辽宁省教育厅攻关项目(05L090) 大连市青年基金项目(2005J22JH038)
关键词 最大频繁项集 有序FP-tree数据挖掘 MFIM算法 Maximal frequent itemsets Ordered FP-tree Data mining MFIM algorithm
  • 相关文献

参考文献10

  • 1Agrawal R,Imielinski T,Swami R.Mining association rules between sets of items in large databases[C].SIGMOD'93.Washington,1993:207-216.
  • 2Agrawal R,Srikant R.Fast algorithms for mining association rules[C].VLDB'94.Santiago,1994:487-499.
  • 3Grahne G,Zhu J F.Efficiently using prefix-trees in mining frequent itemsets[C].FIMI'03.Melbourne,2003.
  • 4Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C].Proc of ACM SIGMOD' 00.Dallas,2000:1-12.
  • 5Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation:A frequent-pattern tree approach[J].Data Mining and Knowledge Discovery,2004,8(1):53-87.
  • 6He Z,Deng S,Xu X.A FP-tree based approach for mining all strongly correlated pairs[C].Proc of Conf on Computational Intelligence and Security.Xi'an,2005:735-740.
  • 7Han J,Wang J,Lu Y,et al.Mining top-K frequent closed patterns without minimum support[C].ICDM'02.Washington,2003:211-218.
  • 8Zaki M J,Hsiao C.CHARM:An efficient algorithm for closed itemset mining[C].SDM' 02.Arlington,2002:457-473.
  • 9Xin D,Han J W,Yan X F,et al.Mining compressed frequent-pattern sets[C].Proc of the 31st VLDB Conf.Trondheim,2005:709-720.
  • 10Grahne G,Zhu J.High performance mining of maximal frequent itemsets[C].Proc of the 6th SIAM Int'l Workshop on High Performance Data Mining.San Francisco,2003:135-143.

同被引文献63

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部