期刊文献+

含色散介质的一维光子晶体微腔的光学特性和模式调节 被引量:17

Optical Properties and Mode Tuning of Defect Modes in One-Dimensional Photonic Crystal Micro-Cavity Containing Dispersive Medium
原文传递
导出
摘要 采用时域有限差分(FDTD)法计算了含色散介质一维光子晶体微腔的透射谱,研究了缺陷模的频移特性。通过与无色散光子晶体微腔透射谱相比较,发现了介质色散导致的缺陷模频移现象,并详细地分析了中心频率、色散强度和衰减系数等色散介质参量和缺陷模频移的依赖关系。模拟结果显示,缺陷模的频移决定于中心频率、色散强度和衰减系数等色散介质参量的大小,通过合理的调节这些参量,可以有效地调节缺陷模的频率。 Transmission spectrum of a one-dimensional photonic crystal micro-cavity containing dispersive medium are calculated by use of the finite-difference time-domain method, and frequency shift of defect modes is investigated. In comparison with photonic crystal without dispersive medium inside micro-cavity, we find the frequency shift phenomenon of defect modes which results from the medium dispersion. And then, the dependence of frequency shift of defect modes on dispersive medium parameters such as strength of dispersive, damping coefficient and centre frequency is analyzed in detail. The result shows that the above parameters of dispersive medium determine the resonant frequency of the defect modes. The frequency of the defect modes can be significantly tuned by adjusting carefully the dispersive medium parameters. Such phenomenon can be used to tune the resonant frequency, which has a great potential for a new generation of optical components.
出处 《光学学报》 EI CAS CSCD 北大核心 2007年第5期940-945,共6页 Acta Optica Sinica
基金 国家自然科学基金(60471047) 广东省自然科学基金(04011308) 湖北省自然科学基金(2006ABA345) 湖北省教育厅重点科研计划项目(B200604001) 深圳大学科研启动基金资助项目(200647)资助课题
关键词 光电子学 光子晶体 时域有限差分法 微腔 模式调节 optoelectronics photonic crystal finite-difference time-domain method micro-cavity mode tuning
  • 相关文献

参考文献19

  • 1Sajeev John. Strong localization of photons in certain disordered dielelctric superlattices[J]. Phys. Rev. Lett., 1987, 58(23):2486-2489
  • 2Eli Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett. , 1987, 58 (20) :2059-2062
  • 3Alvaro Blanco, Emmanuel Chomski, Serquei Grabtchak et al..Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1. 5 micrometres[J]. Nature,2000, 405(6785): 437-440
  • 4A. Femius Koenderink, Lydia Bechger, H. P. Schriemer et al..Broadband fivefold reduction of vacuum fluctuations probed by dyes in photonic crystals[J]. Phys. Rev. Lett. , 2002, 88(14):143903-143906
  • 5Min Xiao, Yong qing Li, Shao zheng Jin et al.. Measurement of dispersive properties of electromagnetically induced transparency on rubidium atoms[J]. Phys. Rev. Lett., 1995, 74(5): 666-669
  • 6Hai Wang, D. J. Goorshey, W. H. Burkett et al.. Cavity-linewidth narrowing by means of elelctromanetically induced transparency[J]. Opt. Lett., 2000, 25(23): 1732-1734
  • 7Ph. Lalanne, S. Mias, J. P. Hugonin. Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities[J]. Optics Express, 2004, 12 (3): 458-467
  • 8A. M. Steinberg, P. G. Kwiat, R. Y. Chiao. Measurement of the single-photon tunneling time[J]. Phys. Rev. Lett., 1993, 71 (5): 708-711
  • 9安丽萍,刘念华.光子晶体中缺陷的色散导致的群速度降低[J].光学学报,2003,23(11):1287-1290. 被引量:9
  • 10M. Scalora, R. J. Flynn, S. B. Reinhardt et al.. Ultrashort pulse propagation at the photonic band edge: Large tunable group delay with minimal distortion and loss[J]. Phys. Rev. E, 1996,54(2) : R1078-R1081

二级参考文献22

  • 1Birks T A. Endlessly single-mode photonic crystal fiber [J]. Opt. Lett, 1997, 22: 961-963.
  • 2Monro T M. Holty optical fiber: an efficient modal model [J]. J. Lightwave Technology, 1999, 17: 1093-1102.
  • 3Kinght J C, Arriaga J, Briks T A, et al. Anomalous dispersion in photonic crystal fiber [J]. IEEE Photonics Techn., 2000, 12: 807-809.
  • 4Ortigosa-Blanch A, Kinght J C, Wadsworth W J, et al. Highly birefringent photonic crystal fibers [J]. Opt. Lett.,2000, 25: 1325-1328.
  • 5Villeneuve P R, Fan S, Joannopoulos J D. Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficency [J]. Phy. Rev. B, 1996, 54: 7839-7940.
  • 6Leung K M. Defect modes in photonic band structures: a Green's function approach using vector Wiannier functions [J]. J. Opt. Soc. Am. B, 1993, 10: 303-306.
  • 7Kuzmiak V, Maradudin A A. Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components [J]. Phys. Rev. B, 1998, 58(11): 7230-7251.
  • 8Maradudin A A, Kuzmiak V, Mcgurn A R. Photonic Band Gap Materials [M]. edited by Soukoulis C M. Dordrecht:Kluwer Academic Publishers, 1996. 271-275.
  • 9Johnson S G, Joannopoulos J D. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis [J]. Opt. Exp., 2001, 8: 173-190.
  • 10Hao Dongshan, Ma Tiancai. Means for liquidation differences and deformations of the optical soliton in the equivalent twin-rushes optical fiber communication [J]. Chinese Journal of Quantum Electronics (量子电子学报),2003, 20(4): 488-493 (in Chinese).

共引文献44

同被引文献147

引证文献17

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部