期刊文献+

基于神经网络PID控制的柔性微机器人系统 被引量:8

A Flexible Miniature Robotic System Based on Neural Network PID Control
在线阅读 下载PDF
导出
摘要 根据尺蠖蠕动的原理,研制了一种三自由度微型机器人内窥镜诊疗系统;该机器人由空气压橡胶驱动器驱动,通过两个气囊钳位.建立了机器人的动态模型.基于BP神经网络PID控制策略,设计了电—气脉宽调制伺服系统控制机器人的移动.用系统输出的预测值来代替实测值,计算权系数的修正量,实时改变控制参数以提高控制效果.软件仿真和实验结果都证实该方法弥补了传统PID控制方法的不足,显著改善了系统的静动态特性,是一种理想的气动微型蠕动机器人控制方法. Based on inchworm locomotion principle, a 3-DOF miniature endoscopic inspection squirming robot system is designed, which is driven by a pneumatic rubber actuator and clamped by two air chambers. Dynamic model of the robot is built. With BP neural network PID scheme, an electro-pneumatic PWM (Pulse-Width Modulation) servo controller is designed to control the robot movement. With the predicted value of system output instead of measured value, the weight coeffient is corrected and the controller parameters are changed in real time to improve the control performance. Both simulation and experimental results indicate that this scheme can overcome the shortages of traditional PID controllers, improve the system static and dynamic performance, and is an ideal control method for pneumatic miniature squirming robots.
出处 《机器人》 EI CSCD 北大核心 2007年第3期219-223,229,共6页 Robot
基金 国家863计划资助项目(2004AA404013) 国家自然科学基金资助项目(30570485)
关键词 微机器人 BP神经网络 PID 建模 miniature robot BP neural network PID modeling
  • 相关文献

参考文献9

  • 1Adam J A. Medical electronics[J]. IEEE Spectrum, 1994, 31 (1): 70-73.
  • 2Adam J A. Medical electronics [J]. IEEE Spectrum, 1995,32 (1): 80-83.
  • 3Astrom K J,Hang C C, Persson P, et al. Towards intelligent PID control[J]. Automatica, 1992, 28( 1 ) : 1 -9.
  • 4Suzumori K, Iikura K, Tanaka H. Development of flexible microactuator and its applications to robotic mechanisms [ A ]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 1991. 1622- 1627.
  • 5米智楠,钱晋武,龚振邦,米智伟,沈林勇.内窥检查系统主动引导驱动技术的研究[J].高技术通讯,2001,11(6):70-72. 被引量:2
  • 6徐炳辉.气动技术基础知识.液压与气动,1994,(1):39-41.
  • 7Tian S P, Ding G Q, Yan D T, et al. Nonlinear controlling of artillcial muscle system with neural networks [ A ]. Proceedings of the IEEE International Conference on Robotics and Biomimetics [ C ].Piscataway, N J, USA: IEEE, 2004. 56 -59.
  • 8Omatu S, Iwasa T, Yoshioka M. Skill-based PID control by using neural networks [ A ]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics [C]. Piscataway, NJ, USA: IEEE, 1998. 1972-1977.
  • 9Iwasa K, Morizumi N, Omatu S. Pressure control in a plant generating chloride by neural network PID control[A]. Proceedings of the IEEE International Conference on Neural Networks [ C ], Piscataway, NJ, USA: IEEE, 1995. 627-630.

二级参考文献4

  • 1王田苗 宗光华 等.-[J].机器人,1996,18(5):603-603.
  • 2Hong Lichan,IEEE Transactions on Nuclear Science,1997年,44卷,3期,1297页
  • 3黄真,并联机器人机构学理论及控制,1997年,207页
  • 4王田苗,机器人,1996年,18卷,5期,603页

共引文献3

同被引文献58

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部