期刊文献+

夏甸金矿采矿方法过渡期临时矿柱尺寸确定方法研究 被引量:14

THE INTERIM PILLAR SIZE DESIGN METHOD STUDY OF MINING METHOD TRANSITION IN XIADIAN GOLD MINE
在线阅读 下载PDF
导出
摘要 本文针对夏甸金矿由充填法回采转为崩落法回采过渡期确定临时矿柱尺寸的需要,应用FLAC3D对崩落法回采过程中采空区顶板的破坏形式进行了分析,计算结果表明,崩落法采空区顶板塑性破坏区呈拱形发展,且在拱型破坏区之外的上部边界,位移量衰减很快,据此按拱型冒落边界设计了临时矿柱的尺寸,实现了两种采矿方法的产量平稳过渡与临时矿柱的良好回采条件。生产过程中的现场监测表明,实际冒落区与数值计算的拱形破坏区相符,因此表明,以塑性破坏区为标志的采空区冒落范围的数值分析方法,用于确定保安矿柱尺寸是可行的。 The boundary of caving method should be concerned when the mining method in Xiadian good mine transits from filling to caving method, because in the period of transition the filling stope and caving stope should worked at the same time and the falling of mined-out section roof will affect the filling stope, Based on the investigation in site, the first sublevel caving boundary in Xiadian gold mine is studied in this paper, To simulate this situation, a numerical analysis method, FLAC3D is applied. The FLAC3D results show the mined-out section roof have falling after the first sublevel caved, but the plastic zone are formed as vaulted and the displacements attenuation quickly in the boundary of break zone. Scene observation show the falling range not beyond the pillar, and the form of mined-out section falling obeyed the vaulted theory. So designed the boundary of sublevel caving method by the vaulted theory is doable. These results suggest that FLAC3D can be applied to model the mining behavior of complicated discontinuous rock masses.
出处 《中国矿业》 北大核心 2007年第4期61-63,共3页 China Mining Magazine
关键词 采矿方法过渡 临时矿柱 拱形破坏理论 数值分析 FLAC^3D Mining method transition Interim pillar Vaulted falling theory Numerical analysis FLAC3D
  • 相关文献

参考文献12

二级参考文献31

  • 1洪代玲.近25年来美国隧道掘进技术的进展[J].世界隧道,1995(4):25-30. 被引量:1
  • 2[1]Hoek E,Brown E T. Practical estimates of rock mass strength[J]. Int. J. Rock Mech. and Min. Sci.,1997,34(8):1 165~1 187
  • 3[2]Carranza-Torres C,Fairhust C. The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion[J]. Int. J. Rock Mech. and Min. Sci.,1999,36(6):777~809
  • 4[3]Sonmez H,Ulusay R. Modification to the geological strengthe index(GSI) and their applicablity to stablity of slopes[J]. Int. J. Rock Mech. and Min. Sci.,1999,36(6):743~760
  • 5[4]Barton N. Suggested method for the quantitative description of discontinuinties in rock mass[J]. Int. J. Rock Mech. and Min. Sci.,1978,15(6):319~368
  • 6[5]Lemaitre J. How to use damage mechanics[J]. Nucl. Eng. Design,1984, 80(1): 233~245
  • 7[7]Priest S D, Hudson J A. Estimation of discontinuity spacing and trace length using scaling sureys[J]. Int.J. Rock Min. Sci. & Geomech.Abstra, 1981, 18: 183~197
  • 8[8]Kulatilake P, Wu T H. The density of discontinuity trace in sampling window[J]. Int. J. Rock Mech. Sci., 1984, 21(6): 345~347
  • 9[9]Barton N, Bandis S. Review of predictive capabilities of JRC-JCS mode in engineering practice[A]. In: Rock Joints[C]. Rotterdam: A. A.Balkema, 1990, 603~610
  • 10[11]Bandis S, lumsden A C, Barton N K. Experimental studies of scale effects on the hear behavior of rock joint[J]. Int. J. Rock Mech. Min.Sci. Geomech. Abstra., 1981, 18:1~21

共引文献197

同被引文献93

引证文献14

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部