期刊文献+

基于信息协同的子区交通状态加权计算与判别方法 被引量:11

Weighting calculation and judging method of regional traffic state based on information coordination
在线阅读 下载PDF
导出
摘要 基于行程时间和路段长度信息给出了路段拥挤系数的概念,建立了子区交通状态矩阵,利用加权系数的方法计算整个协同子区的拥挤系数,进而对子区的交通状态进行判断。最后,利用VISSIM仿真软件建立路网对上述方法进行验证。试验表明,这种方法简单实用,可直接用于交通状态分析中,为协同策略的制定提供了背景环境方面的参考。 The concept of road segment congestion quotiety was introduced based on the information of travel time and segment length, and the traffic state matrix of the region was built. The congestion quotiety of the whole coordination region was calculated by averaging the weighted quotieties of the segments and was used to judge the traffic state of the region. A simulation road network was built based on the simulation software VISSIM to check the feasibility of the proposed method. Simulation results show that the method based on the congestion quotiety is simple and practical, can judge the traffic state,provides a background environment for the development of the coordination strategy.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第3期524-527,共4页 Journal of Jilin University:Engineering and Technology Edition
基金 高等学校博士学科点专项科研基金资助项目(20040183035) 国家自然科学基金资助项目(60474048) 吉林大学'985工程'资助项目
关键词 交通运输系统工程 信息协同 交通状态 拥挤系数 协同子区 engineering of communication and transportation system information coordination traffic state congestion quotiety coordination region
  • 相关文献

参考文献2

二级参考文献14

  • 1杨兆升.关于智能运输系统的关键理论——综合路段行程时间预测的研究[J].交通运输工程学报,2001,1(1):65-67. 被引量:54
  • 2Jiuyi Hua, Ardeshir Faghri. Dynamic Traffic Pattern Classification Using Artificial Neural Networks [R] .Transportation research Record 1399:14-19.
  • 3Adel W Sadek, Michael J Demetsky, Brain L Smith. Case-Basd Reasoning for Real-Time Traffic Flow Wanagement [J] .Computer-Aided Civil and Infrastructure Engineering, 1999, 14: 347-356.
  • 4Attor Sanju Nair,Jyh-Charn Liu,Laurence Rilett,Saurabh Gupta.Non-Linear Analysis of Traffic Flow.2001 IEEE Intelligent Transportation Systerns Conference Proceedings, 2001: 683- 687.
  • 5Hojjat Adeli, Asim Karim.Fuzzy-Wavelet RBFNN Model for Freeway Incident Detection [J] .Journal of Transportation Engineering, 2000:464-471.
  • 6Karlene A Kosanovich, Michael J Piovoso.PCA of Wavelet Transformed Process Data for Monitoring[J] .Intelligent Data Analysis, 1997 (1) :85-99.
  • 7Vladimir N Vapnik.Statistical Learning Theory [M] .New Yolk: Wiley, 1988.
  • 8Vladimir N Vapnik.The Nature of Statistical Learning Theory [M] .New York: Springer, 1995.
  • 9PARAMICS Use, Guide-Version 3.0.U.K.Quadstone Limited[R] .Edinburgh, 1999.
  • 10刘灿齐,杨佩昆.车队密度散布模型及在车队截尾问题上的应用[J].中国公路学报,2001,14(1):89-91. 被引量:14

共引文献46

同被引文献95

引证文献11

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部