期刊文献+

基于最大频繁项目序列集挖掘DMFIA算法的改进 被引量:1

Improvement of DMFIA algorithm based on mining of maximal frequent item sequence sets
在线阅读 下载PDF
导出
摘要 为了有效地解决客户序列视图数据库的数据挖掘问题,借鉴了关联规则挖掘最大频繁项目集DMFIA算法的相关思想。详细阐述了该算法,针对原算法不能有效地解决客户序列视图数据库的数据挖掘这一问题,在原算法的基础上结合序列模式提出了改进的DMFIA算法,并在原算法的基础上有了较大的改进。为了验证算法的正确性,运用Ora-cle9i数据库的PL/SQL进行了相应的验证。实验结果证实了改进算法的有效性和实用性,并具有较好的创新性和理论价值。 In order to solve the problem of data mining about customer sequence view database validly, the correlative idea ofthe DMFIA algorithm for mining of maximal frequent item sets is refered. The DMFIA algorithm is expounded particularly. Because the algorithm can not solve the problem of data mining about customer sequence view database validly, the improved algorithm combining with sequential patterns is put forword. Based on the DMFIA algorithm, the larger improvement is achieved in the improved algorithm. In order to validate the correctness of the improved algorithm, the algorithms are tested through PL/SQL language of oracle9i database accordingly. The experimental result validates the validity and practicability of the improved algorithm. It shows the better creativity and value of theory of the improved algorithm.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第7期1493-1496,1500,共5页 Computer Engineering and Design
关键词 数据挖掘 关联规则 序列模式 DMFIA算法 最大频繁项目集 最大频繁项目序列集 data mining association rule sequence pattern DMFIA algorithm maximum frequent item sets maximum frequent item sequence sets
  • 相关文献

参考文献5

二级参考文献32

  • 1Lin Dao I,Proc the 6th European Conference on Extending Database Technology,1998年,105页
  • 2Agrawal R,Proc the 11th Inter Conference on Data Engineering,1995年,3页
  • 3Agrawal R, Srikant R. Mining sequential patterns. In: Yu PS, Chen ASP, eds. Proc. of the 11th Int'l Conf. on Data Engineering. Washington DC: IEEE Computer Society Press, 1995. 3-14.
  • 4Agrawal R, Srikant R. Mining sequential patterns: Generalizations and performance improvements. In: Apers PMG, Mokrane B, et al., eds. Proc. of the 5th Int'l Conf. on Extending Database Technology. Heidelberg: Springer-Verlag, 1996. 3-17.
  • 5Ozden B, Ramaswamy S, Silberschatz A. Cyclic association rules. In: Proc. of the 14th Int'l Conf. on Data Engineering. 1998. http://citeseer.ist.psu.edu/ozden98cyclic.html
  • 6Garofalakis M, Rastogi R, Shim K. Spirit: Sequential pattern mining with regular expression constraints. In: Atkinson MP, Orlowska ME, et al., eds. Proc. of the Int'l Conf. on Very Large Data Bases. Edinburgh: Morgan Kaufmann Publishers, 1999. 223-234.
  • 7Han J, Pei J, Mortazavi-Asl B, Chen QM, Dayal U, Hsu MC. Freespan: Frequent pattern-projected sequential pattern mining. In: Ramakrishnan R, ed. Proc. of the Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2000. 355-359.
  • 8Han J, Pei J, Mortazavi-Asl B, Pinto H, Chen QM, Dayal U, Hsu MC. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In: Proc. of the 17th Int'l Conf. on Data Engineering. 2001. http://citeseer.ist.psu.edu/470226.html
  • 9Ayres J, Gehrke J, Yiu T, Flannick J. Sequential pattern mining using a bitmap representation. In: Proc. of the 8th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. 2002. http://citeseer.ist.psu.edu/ayres02sequential.html
  • 10Parthasarathy S, Zaki MJ, Ogihara M, Dwarkadas S. Incremental and interactive sequence mining. In: Gauch S, ed. Proc. of the 8th Int'l Conf. on Information and Knowledge Management. New York: ACM Press, 1999. 251-258.

共引文献265

同被引文献17

引证文献1

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部